Three-body CP Eigenstates

<u>Tim Gershon</u> (KEK) & Masashi Hazumi (KEK) 21 January 2003

Super B Factory Workshop

Opening Position

- *CP* violation observed in a handful of modes
- KM scheme is *elegant* and *effective*, but is it *enough*?
- Already evidence for beyond SM *CP* violation
- Desire multiple probes of *CPV* phenomena

 $b \rightarrow sqq$ Anomaly

CP Violation Analyses

- Time-dependent studies of *B* → *CP* eigenstates have been very successful
 - Phenomenology rather straightforward
- *CP* violation measurements from $B \rightarrow \text{non-}CP$ final states have more unknown parameters
 - Analysis is harder, requires more statistics
 - Their time will certainly come
- Number of two-body *CP* eigenstates is finite

- B^0 is a neutral spin-0 particle
- Let P^0 , Q^0 , X^0 be neutral particles Q^0
- *L* is orbital angular momentum between $P^0 Q^0$
- *L'* is orbital angular momentum between $(P^0 Q^0) X^0$

 $B^0 \to P^0 Q^0 X^0_{\mathbf{P}^0}$

L'

• Conservation of angular momentum:

$$J_{B^0} = 0 = L + L' + S_{P^0} + S_{Q^0} + S_{X^0}$$

$CP ext{ of } P^0 Q^0 X^0$

- $CP(P^{0}Q^{0}X^{0}) = CP(P^{0}) CP(Q^{0}) CP(X^{0}) (-1)^{L} (-1)^{L'}$
- If P^0 , Q^0 , X^0 are all spin-0 particles: conservation of angular momentum $\rightarrow L' = L$
- If P⁰, Q⁰, X⁰ are all spin-0 CP eigenstates:
 final state is a CP eigenstate:

 $CP(P^0Q^0X^0) = CP(P^0) CP(Q^0) CP(X^0)$

• P^0, Q^0, X^0 candidates:

$$\pi^{0}$$
, η , η' , f_{0} , a_{0} , K_{S} , K_{L} , D_{CP} , η_{c} , χ_{c0}

Comments on $B^0 \to P^0 Q^0 X^0$

- Enormous number of possible final states!
- In general, more different quarks in final state
 → more amplitudes can contribute
- Concentrate on (hopefully cleaner) final states containing (at least) two identical particles

- *L* is orbital angular momentum between $P^0 P^0$
- Bose-Einstein statistics $\rightarrow L = 0, 2, 4, ...$
- Conservation of angular momentum: L' = L $CP(P^0P^0X^0) = CP(X^0)$

Advantage of $B^0 \rightarrow P^0 P^0 X^0$ (?)

- $J^{P}(P^{0}P^{0}) = 0^{+}, 2^{+}, 4^{+}, ...$
- Decays to similar final states (eg. $B^+ \rightarrow \chi_{c(0,2)} K^+$) forbidden in factorization (although observed)
- Does this help us?
- Expert input is welcome!

Possible $B^0 \to P^0 P^0 X^0$

					P^0			
X^0	π^0	η	η'	f_0	a_0	K_S	K_L	D_{CP}
π^0	$\pi^0 \pi^0 \pi^0$	$\eta\eta\pi^0$	$\eta' \eta' \pi^0$	$f_0 f_0 \pi^0$	$a_0a_0\pi^0$	$K_S K_S \pi^0$	$K_L K_L \pi^0$	$D_{CP}D_{CP}\pi^0$
η	$\pi^0\pi^0\eta$	$\eta\eta\eta$	$\eta'\eta'\eta$	$f_0 f_0 \eta$	$a_0 a_0 \eta$	$K_S K_S \eta$	$K_L K_L \eta$	$D_{CP}D_{CP}\eta$
η'	$\pi^0 \pi^0 \eta'$	$\eta\eta\eta\eta'$	$\eta'\eta'\eta'$	$f_0 f_0 \eta'$	$a_0a_0\eta'$	$K_S K_S \eta'$	$K_L K_L \eta'$	$D_{CP}D_{CP}\eta'$
f_0	$\pi^{0}\pi^{0}f_{0}$	$\eta\eta f_0$	$\eta' \eta' f_0$	$f_0 f_0 f_0$	$a_0 a_0 f_0$	$K_S K_S f_0$	$K_L K_L f_0$	$D_{CP}D_{CP}f_0$
a_0	$\pi^{0}\pi^{0}a_{0}$	$\eta\eta a_0$	$\eta' \eta' a_0$	$f_0 f_0 a_0$	$a_0 a_0 a_0$	$K_S K_S a_0$	$K_L K_L a_0$	$D_{CP}D_{CP}a_0$
K_S	$\pi^0 \pi^0 K_S$	$\eta \eta K_S$	$\eta' \eta' K_S$	$f_0 f_0 K_S$	$a_0a_0K_S$	$K_S K_S K_S$	$K_L K_L K_S$	$D_{CP}D_{CP}K_S$
K_L	$\pi^0 \pi^0 K_L$	$\eta\eta K_L$	$\eta' \eta' K_L$	$f_0 f_0 K_L$	$a_0a_0K_L$	$K_S K_S K_L$	$K_L K_L K_L$	$D_{CP}D_{CP}K_L$
D_{CP}	$\pi^0 \pi^0 D_{CP}$	$\eta\eta D_{CP}$	$\eta'\eta' D_{CP}$	$f_0f_0D_{CP}$	$a_0 a_0 D_{CP}$	$K_S K_S D_{CP}$	$K_L K_L D_{CP}$	
η_c	$\pi^0 \pi^0 \eta_c$	$\eta\eta\eta_c$	$\eta' \eta' \eta_c$	$f_0 f_0 \eta_c$	$a_0 a_0 \eta_c$	$K_S K_S \eta_c$	$K_L K_L \eta_c$	
χ_{c0}	$\pi^0 \pi^0 \chi_{c0}$	$\eta\eta\chi_{c0}$	$\eta' \eta' \chi_{c0}$	$f_0 f_0 \chi_{c0}$	$a_0 a_0 \chi_{c0}$	$K_S K_S \chi_{c0}$	$K_L K_L \chi_{c0}$	

Comments on $B^0 \to P^0 P^0 X^0$

- Try to judge which modes are (will be) useful now (at a Super *B* factory)
- No reliable technique to estimate three-body BFs
- Base estimates of usefulness on measured quantities, where possible
- Measurements of three-body BFs provide useful information about hadronic *B* decay

 $B^0 \to K_S K_S \eta_c$

- Modes $B^0 \rightarrow P^0 P^0(cc)$ probe $b \rightarrow ccd$ transition with additional qq production
- Consider product BFs ... not very promising

Aside: $B^0 \to K_S K_S J/\psi$

- Cleaner signal and higher efficiency for $cc = J/\psi$
- Here, X^0 has spin-1 \rightarrow final state is not a *CP* eigenstate in general

•
$$J^{P}(K_{S}K_{S}) = \underline{0}^{+}, 2^{+}, 4^{+}, ...$$

- If 0^+ is dominant, final state *is* a *CP* eigenstate
- Higher *L* states suppressed by centrifugal barrier?
- Can determine from $(K_{S}K_{S})$ helicity distribution

 $B^0 \rightarrow K_S K_S D_{Cl}$

- Can use $B^0 \to D_{CP} \pi^0$ to measure $sin(2\varphi_P)$ or probe for (*R*-parity violating) new physics
- Same diagrams with ss production
- Expect smaller (but cleaner) signal than $B^0 \to D_{CP} \pi^0$

$B^0 \rightarrow KKD$

- No observation of $B \rightarrow K_S K_S D$ yet, but ...
- Numerous similar $B \rightarrow KK^{(*)}D^{(*)}$ modes observed

 $B^{\theta} \rightarrow D_{CP} D_{CP} K_{S} / D_{CP} D_{CP} \pi^{\theta}$

- These modes probe $b \rightarrow ccs / b \rightarrow ccd$
- Negligible penguin contribution (?)
- Tiny efficiency to reconstruct $2 * (D \rightarrow D_{CP})$

$B^0 \rightarrow KKK$

- Mode $B^0 \to (K^+K^-)_{\text{non-}\varphi} K_s$ already used to probe $b \to sqq$ (found to be mainly CP^+)
- Suggests reasonable BF for $B^0 \to K_S K_S K_S$
- Indeed observed!

- from 78/fb

 $B^0 \rightarrow K^0_c K^0_c K^0_c$ (d) 6 Events/(10 MeV) 5 total background 4 з 2 0 0.3 0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.5 ΔE (GeV)

 $B^0 \rightarrow K_S K_S K_S$

- Clean! No *u* quark in final state \rightarrow tiny tree pollution
- Probes $b \to s$ better than $B^0 \to (K^+ K^-)_{\text{non-}\varphi} K_S$ or $B^0 \to \eta' K_S$
- Clean! Good signal/background ratio.
- Little (negligible?) $b \rightarrow c$ background

 K_{S} Vertexing

- To date, Belle has only announced results of timedependent analyses with tracks that originate from the *B* vertex (*egs. J/\psi K_{s'},* $\pi^+\pi^-$, ϕK_{s})
- BaBar has announced results on $D^{*+}D^{-}$, $D^{*+}D^{*-}$, $K_{\pi} \pi^{0}$
- <u>It is possible</u> to get vertex information from K_s alone, with reasonable efficiency
- High vertex efficiency for $K_S K_S K_S$

 $B^0 \rightarrow K_S K_S K_L$

- Mode $B^0 \to (K^+ K^-)_{\text{non-}\varphi} K_S$ found to be mainly CP+($K^+ K^-$ has even L)
- Suggests $B^0 \to (K_S K_L)_{\text{non-}\varphi} K_S$ should be small
- Good news! Use φ mass constraint:
 - reduce continuum background
 - remove *cc* background

 $B^0 \to \eta' \eta' K_{\rm s}$

- $B \rightarrow \varphi \varphi K$ proposed as sensitive to new physics ...
- ... and observed - from 78/fb • $BF(B \rightarrow \eta' K) > expected$ • $BF(B \rightarrow \eta' X_s) > expected$ • $BF(B \rightarrow \eta' X_s) > expected$

$$B^0 \rightarrow \pi^0 \pi^0 K_{S'}$$
, etc

- $B^0 \to \pi^0 K_{S}$ currently a hot topic
- Add dd production $\rightarrow B^0 \rightarrow \pi^0 \pi^0 K_s$
- Could also use $B^0 \to P^0 Q^0 X^0$ modes:

$$B^0 \to \pi^0 \eta K_{S'} B^0 \to \pi^0 \eta' K_S$$

• Note that, eg., $B^0 \to \pi^0 \eta' K_s$ includes $B^0 \to \eta' K^{*0}$

 $B^0 \to K_S K_S \pi^0$

- Time-dependence of $B^0 \rightarrow \pi^0 \pi^0$ probes φ_2 in principle
- In practise cannot measure vertex position
- Add ss production $\rightarrow B^0 \rightarrow K_S K_S \pi^0$
- Expect this mode to be rather rare

possibly enhanced if mediated by $B^0 \rightarrow f_0 \pi^0$, $a_0 \pi^0$ (?)

 $B^0 \rightarrow \pi^0 \pi^0 \pi^0$

- Example of obtaining useful information without studying time-dependence
- No vertex information available
- BF can give a bound on the contribution of $B^0 \to \sigma^0 \pi^0$ to $B^0 \to \pi^+ \pi^- \pi^0$ (affects $B^0 \to \rho^+ \pi^-$ analysis)

Aside: $B^0 \rightarrow P^0 P^0 \gamma$

- $P^0 P^0 \gamma$ is <u>not</u> a *CP* eigenstate
- P^0P^0 is a *CP* eigenstate
- Behaves as $B^0 \to M^0 \gamma$... a good probe for new physics
- $P^{\theta}P^{\theta}$ cannot form θ^+ state \rightarrow suppressed (?)
- Probes $b \rightarrow d\gamma$ vertex
- No $b \rightarrow s\gamma$ background for $B^0 \rightarrow K_s K_s \gamma$

Conclusions

- Final state in $B^0 \to P^0 Q^0 X^0$ decays is a *CP* eigenstate $(P^0, Q^0, X^0$ are spin-0 *CP* eigenstates)
- Numerous possibilities for time-dependent studies
- Requiring $P^0 = Q^0$ adds useful (?) constraints
- Some modes which cannot be used for time-dependent analyses are still interesting
- $B^0 \to K_S K_S K_S$ may help solve the $b \to sqq$ riddle