

- Motivation
- □ Fit Method
- Inputs
- Results
- Conclusion

G. Eigen, University of Bergen

In collaboration with G. Dubois-Felsmann, D. Hitlin, F. Porter

Super B-Factory Workshop, Hawaii 21-01-2004

MOTIVATION

- □ In the hunt for New Physics (Supersymmetry) the Standard Model (SM) has to be scrutinized in various areas
- □ Two very promising areas are CP violation and rare decays, that may reveal first signs of New Physics before the start of LHC
- □ BABAR/Belle have measured different CP asymmetries e.g. sin 2β (ψ K_s) = 0.736±0.049, sin 2β (ϕ K_s) = -0.14±0.33 sin 2α ($\pi\pi$) = -0.58±0.2
- with present statistics this is in good agreement with SM prediction that CP violation is due to phase of CKM matrix
- □ The phase of the CKM matrix, however, cannot predict the observed baryon-photons ratio: n_B/n_g ≅ 10⁻²⁰ ⇔ n_B/n_g ≅ 10⁻¹¹
 ⇒ 9 orders of magnitude difference
- □ There are new phases predicted in extension of SM

For example in MSSM 124 new parameters enter of which 44 are new phases

Super B-factory workshop Hawaii, 21-01-04

The Cabbibo-Kobayashi-Maskawa Matrix

□ A convenient representation of the CKM matrix is the small-angle Wolfenstein approximation to order $O(\lambda^6)$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + A^2\lambda^5(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 - \frac{1}{2}A^2\lambda^4 & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 + A\lambda^4(\frac{1}{2} - \rho - i\eta) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + O(\lambda^6)$$

with $\overline{\rho} = \rho(1 - \frac{1}{2}\lambda^2)$ and $\overline{\eta} = \eta(1 - \frac{1}{2}\lambda^2)$

□ The unitarity relation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ that represents a triangle (called Unitarity Triangle) in the $\overline{\rho}$ - $\overline{\eta}$ plane involves all 4 independent CKM parameters λ , A, ρ , and η

Super B-factory workshop Hawaii, 21-01-04

MOTIVATION

□ SM tests in the CP sector are conducted by performing maximum likelihood fits of the unitarity triangle

CKM tests need to be based on a conservative, robust method with a realistic treatment of uncertainties to reduce the sensitivity to avoid fake conflicts or fluctuations

Only then we can believe that any observed significant conflict is real indicating the presence of New Physics Super B-factory workshop Hawaii, 21-01-04 G. Eigen, U Bergen

Global Fit Methods

Different approaches exist:

- The scanning method a frequentist approach first developed for the BABAR physics book (M. Schune, S. Plaszynski), extended by Dubois-Felsmann et al
- RFIT, a frequentist approach that maps out the theoretical parameter space in a single fit A.Höcker et al, Eur.Phys.J. C21, 225 (2001)
- The Bayesian approach that adds experimental & theoretical errors in quadrature M. Ciuchini et al, JHEP 0107, 013 (2001)
- > A frequentist approach by Dresden group K. Schubert and R. Nogowski
- > The PDG approach F. Gilman, K. Kleinknecht and D. Renker

Model-independent Analysis of UT

- □ New Physics is expected to affect both B_dB_d mixing & B_sB_s mixing introducing new CP-violating phases that differ from SM phase
- □ This is an extension of the scenario discussed by Y. Nir in the BABAR physics book to B_sB_s mixing and b→sss penguins Y. Okada has discussed similar ideas _____
- Jossi considered measurements of V_{ub}/V_{cb} , Δm_{Bd} , $a_{\psi Ks}$, $a_{\pi\pi}$, we extend this to Δm_{Bs} , $a_{\phi Ks}$ ($a_{\eta'Ks}$) in addition to ϵ_{K} , $\gamma(DK)$

In the presence of new physics:
i)
$$b \rightarrow u\bar{u}d: a_{\pi\pi} = a_{CP}(\pi^{+}\pi^{-})$$

 $b \rightarrow c\bar{c}s: a_{\psi Ks} = a_{CP}(\psi K_{s}^{0})$
ia) $b \rightarrow s\bar{s}s: a_{\phi Ks} = a_{CP}(\phi K_{s}^{0})$
ii) There would be a new contribution to KK mixing
constraint: small ε_{K} (ignore new parameters)
iii) Unitarity of the 3 family CKM matrix is maintained
if there are no new quark generations
Super B-factory workshop Hawaii, 21-01-04
G. Eigen, U Bergen

6

Model-independent Analysis of UT

□ Under these circumstances new physics effects can be described by 4 parameters: \mathbf{r}_d , θ_d , \mathbf{r}_s , θ_s

$$\begin{pmatrix} \left\langle \mathbf{B_{d,s}^{0} \left| \mathbf{H_{eff}^{full} \left| \overline{\mathbf{B}_{d,s}^{0}} \right\rangle} \right\rangle \\ \overline{\left\langle \mathbf{B_{d,s}^{0} \left| \mathbf{H_{eff}^{SM} \left| \overline{\mathbf{B}_{d,s}^{0}} \right\rangle} \right\rangle} \\ \end{bmatrix} = (\mathbf{r}_{d,s} \mathbf{e}^{i\theta_{d,s}})^{2}$$

Our observables are sensitive to r_d , θ_d , r_s induced by mixing (no θ_s sensitive observable)

In addition, we are sensitive to a new phase $\theta_{s}{}'{=}\phi_{s}{-}\theta_{d}$ in b—sss transitions

Thus, New Physics parameters modify the parameterization of following observables

$$a_{\psi K_s^0} = \sin \left(2 \beta + 2\theta_d\right)$$

$$a_{\pi^+\pi^-} = \sin (2 \alpha - 2\theta_d)$$

$$\Delta m_{B_d} = C_t R_t^2 r_d^2$$

Super B-factory workshop Hawaii, 21-01-04

$$a_{\phi K_s^0} = \sin (2\beta + 2\varphi_s)$$

$$\Delta m_{B_s} = C_t R_t^2 \xi^2 r_s^2$$

G. Eigen, U Bergen

The Scanning Method

- The scanning method is an unbiased, conservative approach to extract $\overline{A}, \overline{\rho}, \overline{\eta}$ & New Physics parameters from the observables
- We have extended the method of the BABAR physics book (M.H. Schune and S. Plaszczynski) to deal with the problem of non-Gassian theoretical uncertainties in a consistent way
- \square We factorize quantities affected by non-Gaussian uncertainties ($\Delta_{th})$ from the measurements
- □ We select specific values for the theoretical parameters $\Gamma^{th}(B \rightarrow \rho l \nu), \Gamma^{th}(b \rightarrow u l \nu), \Gamma^{th}(b \rightarrow c l \nu), F_{D^*}(1), B_K, f_B \sqrt{B_B}, \xi$

& perform a maximum likelihood fit using a frequentist approach

The Scanning Method

□ A particular set of theoretical parameters we call a "model" M & we perform a χ^2 minimization to determine A, $\overline{\rho}$, $\overline{\eta}$, r_d , θ_d , r_s , φ_s

$$\chi_{\rm M}^2(\mathbf{A},\overline{\rho},\overline{\eta}) = \sum \left(\frac{\langle \mathbf{Y} \rangle - \mathbf{Y}_{\rm M}(\mathbf{A},\overline{\rho},\overline{\eta},\mathbf{r}_{\rm d},\boldsymbol{\theta}_{\rm d},\mathbf{r}_{\rm s},\boldsymbol{\varphi}_{\rm s}) \otimes \mathbf{F}(\mathbf{x})}{\sigma_{\rm Y}} \right)^2$$

- \Box Here <Y> denotes an observable & σ_y accounts for statistical and systematic error added in quadrature, while F(x) represents the theoretical parameters affected by non-Gaussian errors
- For Gaussian error part of the theoretical parameters, we also include specific terms in the χ^2
- We fit many individual models scanning over the allowed theoretical parameter space for each of these parameters
- \Box We consider a model consistent with data, if $P(\chi^2_M)_{min} > 5\%$ > For these we determine $A, \overline{\rho}, \overline{\eta}, r_d, \theta_d, r_s, \varphi_s$ and plot contours > The contours of various models are overlayed We can also study correlations among theoretical parameters extending their range far beyond that specified by theorists Super B-factory workshop Hawaii, 21-01-04
 G. Eigen, U Bergen

9

$$\begin{aligned} \frac{\text{The }_{\chi}^{2} \text{ Function in Model-independent Analysis}}{\chi_{M}^{2}(A,\rho,\overline{\eta}) = \left(\frac{\langle \Delta m_{B_{d}} \rangle - \Delta m_{B_{d}}(A,\overline{\rho},\overline{\eta},\underline{\eta},\underline{\eta})}{\sigma_{\Delta m_{B_{d}}}}\right)^{2} + \left(\frac{\langle |V_{cb}F(1)\rangle - A^{2}\lambda^{4}|F(1)|^{2}}{\sigma_{V_{cb}F(1)}}\right)^{2} + \left(\frac{\langle |B_{clv} \rangle - \tilde{\Gamma}_{clv}^{r}A^{2}\lambda^{4}\tau_{b}}{\sigma_{B_{dv}}}\right)^{2} \\ &+ \left(\frac{\langle |B_{\rho lv} \rangle - \tilde{\Gamma}_{\rho lv}^{r}A^{2}\lambda^{6}\tau_{B}(\rho^{2} + \eta^{2})}{\sigma_{B_{dv}}}\right)^{2} + \left(\frac{\langle |B_{ulv} \rangle - \tilde{\Gamma}_{ulv}^{r}A^{2}\lambda^{6}\tau_{b}(\rho^{2} + \eta^{2})}{\sigma_{B_{uv}}}\right)^{2} + \left(\frac{\langle |E_{clv} \rangle - \tilde{I}_{clv}^{r}A^{2}\lambda^{4}\tau_{b}}{\sigma_{s}}\right)^{2} \\ &+ \left(\frac{\langle a_{\psi K_{v}} \rangle - \sin 2\beta(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\beta}}\right)^{2} + \left(\frac{\langle \Delta m_{B_{v}} \rangle - \Delta m_{B_{v}}(A,\overline{\rho},\overline{\eta},\overline{\eta},\overline{s},\overline{r})}{\sigma_{sin 2\alpha}}\right)^{2} + \left(\frac{\langle a_{\psi K_{v}} \rangle - \sin 2\beta(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\beta}}\right)^{2} + \left(\frac{\langle a_{\pi r} \rangle - \sin 2\alpha(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\alpha}}\right)^{2} + \left(\frac{\langle a_{\mu K_{v}} \rangle - \sin 2\beta(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\beta}}\right)^{2} \\ &+ \left(\frac{\langle a_{\gamma K_{v}} \rangle - \sin 2\beta(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\beta}}\right)^{2} + \left(\frac{\langle a_{\pi r} \rangle - \sin 2\alpha(\overline{\rho},\overline{\eta},\theta)}{\sigma_{sin 2\alpha}}\right)^{2} + \left(\frac{\langle a_{\mu K} \rangle - \sin \gamma(\overline{\rho},\overline{\eta})}{\sigma_{sin \gamma}}\right)^{2} \\ &+ \left(\frac{\langle B_{K} \rangle - B_{K}}{\sigma_{B_{K}}}\right)^{2} + \left(\frac{\langle E_{B} \sqrt{B_{B}} \rangle - f_{B} \sqrt{B_{B}}}{\sigma_{f_{B} \sqrt{B_{B}}}}\right)^{2} + \left(\frac{\langle \Delta \rangle - \lambda}{\sigma_{\lambda}}\right)^{2} + \left(\frac{\langle m_{V} \rangle - m_{v}}{\sigma_{m_{v}}}\right)^{2} + \left(\frac{\langle E_{B} \rangle - \sigma_{E_{v}}}{\sigma_{\pi_{e}}}\right)^{2} \\ &+ \left(\frac{\langle m_{W} \rangle - m_{W}}{\sigma_{M_{W}}}\right)^{2} + \left(\frac{\langle E_{S} \rangle - \tilde{E}_{S}}{\sigma_{\tilde{E}}}\right)^{2} + \left(\frac{\langle T_{B^{*}} \rangle - T_{B^{*}}}{\sigma_{E_{B}^{*}}}\right)^{2} + \left(\frac{\langle T_{B^{*}} \rangle - T_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} \\ &+ \left(\frac{\langle m_{W} \rangle - m_{A}}}{\sigma_{A_{b}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} \\ &+ \left(\frac{\langle T_{A_{h}} \rangle - \tau_{A_{h}}}}{\sigma_{A_{h}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}}{\sigma_{E_{B^{*}}}}\right)^{2} \\ &+ \left(\frac{\langle T_{A_{h}} \rangle - \tau_{A_{h}}}}{\sigma_{A_{h}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_{B^{*}}}}\right)^{2} + \left(\frac{\langle F_{B^{*}} \rangle - F_{B^{*}}}{\sigma_{E_$$

H

Semileptonic Observables

Presently, consider 11 different observables

CP-violating Observables in BB System

$$\sin 2\beta(\overline{\rho},\overline{\eta}) = \frac{2\overline{\eta}(1-\overline{\rho})}{\left[\left(1-\overline{\rho}\right)^2 + \overline{\eta}^2\right]}$$

$$\sin 2\beta(\overline{\rho},\overline{\eta}) = \frac{2\overline{\eta}(1-\overline{\rho})}{\left[\left(1-\overline{\rho}\right)^2 + \overline{\eta}^2\right]}$$

$$\sin 2\alpha(\overline{\rho},\overline{\eta}) = \frac{2\overline{\eta}\left(\overline{\eta}^2 + \overline{\rho}(\overline{\rho} - 1)\right)}{\left(\rho^2 + \eta^2\right)\left[\left(1 - \overline{\rho}\right)^2 + \overline{\eta}^2\right]}$$

$$\sin 2\gamma(\overline{\rho},\overline{\eta}) = \frac{2\overline{\eta}}{\left(\rho^2 + \eta^2\right)}$$

Note, that presently no extra strong phases in $a_{\pi\pi}$ are included

In future will include this adding $C_{\pi\pi}$ in the global fits

Observables

Observable	Present Data Set	2011 Data Set
Y(4S) B(b→ul∨) [10 ⁻³]	$1.95\pm0.19_{exp}\pm0.31_{th}$	1.85±0.06 _{exp}
LEP B(b→ul _∨) [10 ⁻³]	$1.71 \pm 0.48_{exp} \pm 0.21_{th}$	1.71±0.48 _{exp}
Y(4S) <mark>B(b→cl</mark> v)	0.1090±0.0023	0.1050±0.0005
LEP B(b→cl∨)	0.1042±0.0026	0.1042±0.0026
Υ(4S) B(B →ρlν) [10 ⁻³]	$2.68 \pm 0.43_{exp} \pm 0.5_{th}$	3.29±0.14
V _{cb} F(1)	0.0367±0.008	0.0378±0.00038
∆ m_{Bd} [ps⁻¹]	0.502±0.007	0.502±0.00104
∆m _{Bs} [ps ⁻¹]	14.4 @90% CL → (20±5)	25±1
ε _K [10 ⁻³]	2.282±0.017	2.282±0.017
λ	0.2235±0.0033	0.2235±0.0033
sin 2 β from ψK_s	0.736±0.049	0.736±0.01
sin 2 β from ϕK_s ($\eta' K_s$)	-0.14±0.33 (0.27±0.22)	0.6±0.15
sin 2α	-0.4±0.2	-0.4±0.05
sin γ	0.7±0.5	0.7±0.15

□ For other masses and lifetimes use PDG 2003 values

Theoretical Parameters

Parameter	Present Value	Expected Value in 2011
F _{D*} (1)	0.87 — 0.95	0.90 — 0.92
Γ (cl v) [ps ⁻¹]	34.1	35.7 — 39.2
Γ (ρ Ι ν) [ps ⁻¹]	12.0 - 22.2	11.0 - 13.4
Γ (u lv) [ps ⁻¹]	54.6 -80.2	60.6 —76.9
B _K	0.74 — 1.0 σ _{Bk} =±0.06	$0.805 - 0.935 \sigma_{Bk} = \pm 0.03$
f _{Bd} √B _{Bd} [MeV]	218 — 238 σ _{fB√BB} =±30	223 — 233 σ _{fB√BB} =±10
£	1.16 — 1.26 σ _ξ =± 0.05	1.16 — 1.26 σ _ξ =±0.05
ղ ₁	1.0 — 1.64	1.0 — 1.64
ղ ₂	0.564 — 0.584	0.564 — 0.584
η ₃	0.43 — 0.51	0.43 — 0.51
η _B	0.54 — 0.56	0.54 — 0.56

Error Projections for CP Asymmetries

PEP-II, KEKB

Super B-Factory >201Q

Present Status of the Unitarity Triangle in SM Fit

D Range of $\overline{\rho}$ - $\overline{\eta}$ values resulting from fits to different models

$$0.116 \le \overline{\rho} \le 0.335 \begin{array}{c} +0.027 \\ -0.11 \end{array}$$

$$0.272 \le \overline{\eta} \le 0.411 \stackrel{+0.036}{-0.026}$$

G. Eigen, U Bergen

Present Results

Parameter	Scan Method
ρ	0.116-0.335 , $\sigma = \pm_{0.11}^{0.027}$
η	0.272-0.411 , σ=±8:838
Α	0.80-0.89 , $\sigma = \pm_{0.024}^{0.028}$
m _c	1.06-1.29 , $\sigma = \pm_{0.18}^{0.18}$
β	(20.7-27.0) ⁰ , σ=± ^{7.1} _{2.6}
α	(84.6-117.2) ⁰ , σ=± ^{5.4} _{15.8}
γ	(40.3-72.5) ⁰ , σ=± ^{8.3} _{3.3}

Present Status of the $\bar{\rho} \mathchar{-} \bar{\eta}$ Plane

 \Box Global fits to present extended data set including $a_{\phi Ks}$, $a_{\pi\pi}$ & $\gamma(DK)$

 \Box The introduction of new parameters $r_d,~\theta_d,~r_s,~\&~\phi_s$ weakens the sin 2β constraint

 \Box Weakening of $\Delta m_{Bd}, \ \Delta m_{Bs}$ & sin 2α bounds is not visible due to large errors & impact of $V_{ub}/V_{cb}, \ \epsilon_K, \ sin \ \gamma \ constraints$

Present Status of $r_d - \theta_d$ Plane & $r_s/r_d - \phi_s$ Plane

 \Box Global fits to present extended data set including $a_{\phi Ks}$, $a_{\pi\pi}$ & γ (DK)

U. LIZCH, U DEIZCH

4U

Present Status of the $\bar{\rho} \mathchar`-\bar{\eta}$ Plane

□ Old global fits to present data set excluding $a_{\phi Ks}$, $a_{\pi\pi}$ & γ (DK) fitting only to r_d , θ_d

- \Box The introduction of new parameters $r_d, \ \theta_d$ weakens the sin 2β constraint Δm_{Bd} & Δm_{Bs} biunds
- **D** Fits extend into negative ρ region

Super B-factory workshop Hawaii, 21-01-04

Present Status of $r_d - \theta_d$ Plane & $r_s/r_d - \theta_s$ Plane

Old global fits to present data set excluding $a_{\phi Ks}$, $a_{\pi\pi} \& \gamma(DK)$ fitting only to r_d , θ_d

Possible Status of the $\bar{\rho} \mathchar{-} \bar{\eta}$ Plane in 2011

 \Box Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi}$ & γ (DK)

Reduced errors yield smaller-size contours and a reduced # of accepted models

 \square The sin 2 β constraint remains weak, now see also weakening Δm_{Bs} bound

Possible Status of $r_d - \theta_d$ & $r_s/r_d - \phi_s$ Planes in 2011

 \Box Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi}$ & γ (DK)

- r_d-θ_d plane is still consistent with SM
- Size of contours are reduced substantially

- \Box r_s- φ _s plane now is inconsistent with SM for some models
- Second region inconsistent with SM disappears

Comparison of Results

The Fit Results for parameterization with r_d , θ_d , r_s , & ϕ_s

Parameter	Present Results	Possible results in 2011
ρ	0.177-0.372 , $\sigma = \pm_{0.031}^{0.022}$	0.227-0.313 , $\sigma = \pm_{0.11}^{0.013}$
η	0.236-0.473 , σ=± ^{0.025} _{0.017}	0.329-0.351 , σ=±%.006
A	0.80-0.89 , σ=±8:835	0.81-0.88 , $\sigma = \pm_{0.022}^{0.025}$
m _c	1.0-1.41 , $\sigma = \pm_{0.18}^{0.16}$	1.09-1.29 , σ=± ^{0.08} _{0.09}
β	(17.9-28.6) ⁰ , σ=± ³ _{1:8}	(23.1-26.9) ⁰ , σ=±1:1
α	(96.3-123.6) ⁰ , σ=± ^{5.0} _{6.4}	(101.4-105.1)°, $\sigma = \pm \frac{1.9}{2.0}$
γ	(34.4-61.3) ⁰ , σ=± ^{4.4} _{2.6}	(48.1-55.5) ⁰ , $\sigma=\pm_{1.3}^{1.5}$

Possible Status of the $\bar{\rho} \mathchar{-} \bar{\eta}$ Plane in 2011

Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi}$, γ**(DK) & μ**_{η'Ks} $\eta 1$ ΔM_{Bd} $\sin 2\beta$ 0.9 ΔM_{Bs} 0.8 0.7 0.6 0.5 0.4 $|V_{ub}/V_{cb}|$ εĸ 0.3 0.2 0.1 0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -1 $\overline{\rho}$

Inclusion of a_{n'Ks} results in reduced countours

Possible Status of $r_d - \theta_d$ & $r_s/r_d - \varphi_s$ Planes in 2011 Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi}$, γ (DK) **& α**_{η'Ks} 0.5 θ 0.4 $r_d - \theta_d$ plane is still consistent 0.3 with SM 0.2 0.1 0 Inclusion of $a_{\eta'Ks}$ reduces $r_d - \theta_d$ contour sizes -0.1-0.2-0.3r_d -0.4-0.5 -----0.75 1.25 2 2.25 0.25 0.5 1.5 1.75 2.5 0 0.5 φ_s 0.4 \mathbf{r}_{s} - $\boldsymbol{\phi}_{s}$ plane remains 0.3 inconsistent with SM 0.2 for some models 0.1 0. -0.1Inclusion of $a_{\eta'Ks}$ reduces $r_s/r_d-\phi_s$ contour sizes -0.2-0.3r_/r -0.4-0.5 0.2 0.8 1.2 1.6 1.8 0.4 1.4 0 2.5 G. Eigen, U Bergen

Possible Status of the $\bar{\rho} - \bar{\eta}$ Plane after 2011

□ Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi}$ & γ (DK) with $a_{\phi Ks}$ =-0.96±0.01 & $a_{\pi\pi}$ =-0.95±0.05

□ Using Belle central values with small errors changes the picture → obtain 2 separated regions in $\overline{\rho}$ - $\overline{\eta}$ plane

 \Box Weakening of sin 2 β , Δm_{Bd} , Δm_{Bs} & sin 2 α bounds is apparent now

Possible Status of $r_d - \theta_d$ & $r_s/r_d - \varphi_s$ Planes after 2011

Global fits to data set expected in 2011 including $a_{\phi Ks}$, $a_{\pi\pi} \& \gamma(DK)$ with $a_{\phi Ks} = -0.96 \pm 0.01 \& a_{\pi\pi} = -0.95 \pm 0.05$

G. Eigen, U Berg[⊥]n

Conclusions

Model-independent analyses will become important in the future

 The scanning method provides a conservative, robust procedure with a reasonable treatment of non-gaussian theor. uncertainties
 This allows to avoid fake conflicts or fluctuations

- This is crucial for believing that any observed significant discrepancy is real indicating New Physics
- Due to the large theoretical uncertainties all measurements are presently consistent with the SM expectation
- Deviation of $a_{CP}(\phi K_s)$ from $a_{CP}(\psi K_s)$ is interesting but not yet significant, similar comment holds for Belle's $S_{\pi\pi} \& A_{\pi\pi}$ results
- \Box If errors get reduced as prognosed, $\overline{\rho} \text{-} \overline{\eta}$ plane will be substantially reduced in 2011
- The fits indicate that the impact of New Physics may be less visible in $\overline{\rho}$ - $\overline{\eta}$ plane but show up in r_d - θ_d or r_s - ϕ_s planes
- \square In the future we will incorporate other sin 2α measurements and add further parameters for strong phases

It is useful to include $sin(2\beta+\gamma)$ from $B \rightarrow D^{(*)}\pi$ modes Super B-factory workshop Hawaii, 21-01-04 G. Eigen, U Bergen