
[Motivation

- Fit Method
\square Inputs
- Results

A. Eigen, University of Bergen

In collaboration with
G. Dubois-Felsmann, D. Hitlin, F. Porter

Supper B-Factory Worlshop, Hawaii 21-01-2004

MOTIVATION

\square In the hunt for New Physics (Supersymmetry) the Standard Model (SM) has to be scrutinized in various areas
\square Two very promising areas are CP violation and rare decays, that may reveal first signs of New Physics before the start of LHC

- BABAR/Belle have measured different CP asymmetries e.g. $\sin 2 \beta\left(\psi K_{s}\right)=0.736 \pm 0.049, \sin 2 \beta\left(\phi K_{s}\right)=-0.14 \pm 0.33$ $\sin 2 \alpha(\pi \pi)=-0.58 \pm 0.2$
\Rightarrow with present statistics this is in good agreement with SM prediction that CP violation is due to phase of CKM matrix
\square The phase of the CKM matrix, however, cannot predict the observed baryon-photons ratio: $n_{B} / n_{g} \cong 10^{-20} \Leftrightarrow n_{B} / n_{g} \cong 10^{-11}$
$\Rightarrow 9$ orders of magnitude difference
\square There are new phases predicted in extension of SM
\square For example in MSSM 124 new parameters enter of which 44 are new phases

The Cabbibo-Kobayashi-Maskawa Matrix

\square A convenient representation of the CKM matrix is the small-angle Wolfenstein approximation to order $O\left(\lambda^{6}\right)$

$$
\mathbf{V}_{\text {CKM }}=\left(\begin{array}{ccc}
\sqrt{1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}} & \lambda & A \lambda^{3}(\rho-\mathrm{i}) \\
\hline-\lambda+\mathrm{A}^{2} \lambda^{5}\left(\frac{1}{2}-\rho-\mathrm{i}\right) & 1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}-\frac{1}{2} \mathrm{~A}^{2} \lambda^{4} & A \mathrm{~A} \lambda^{2} \\
\hline \mathrm{~A} \lambda^{3}(1-\bar{\rho}-\mathrm{i} \overline{)} & -\mathrm{A} \lambda^{2}+\mathrm{A} \lambda^{4}\left(\frac{1}{2}-\rho-\mathrm{i} \eta\right) & 1-\frac{1}{2} \mathrm{~A}^{2} \lambda^{4}
\end{array}\right)+\mathbf{O}\left(\lambda^{6}\right)
$$

with $\bar{\rho}=\rho\left(1-\frac{1}{2} \lambda^{2}\right)$ and $\bar{\eta}=\eta\left(1-\frac{1}{2} \lambda^{2}\right)$
\square The unitarity relation $\mathbf{V}_{\mathbf{u d}} \mathbf{V}_{\mathbf{u b}}^{*}+\mathbf{V}_{\mathrm{cd}} \mathbf{V}_{\mathbf{c b}}^{*}+\mathbf{V}_{\mathrm{td}} \mathbf{V}_{\mathrm{tb}}^{*}=\mathbf{0}$ that represents a triangle (called Unitarity Triangle) in the $\bar{\rho}-\bar{\eta}$ plane involves all 4 independent CKM parameters λ, A, ρ, and η
$\square \lambda=\sin \theta_{c}=0.22$ is best-measured parameter (1.5\%), $A \approx .8$ ($\sim 5 \%$) while $\rho-\eta$ are poorly known

Super B-factory workshop Hawaii, 21-01-04

G. Eigen, U Bergen

MOTIVATION

$\square \quad$ SM tests in the CP sector are conducted by performing maximum likelihood fits of the unitarity triangle
\square Present inputs are based on $\bar{\eta}$ measurements of B semileptonic decays, $\Delta m_{d}, \Delta m_{s}$, $a_{c p}\left(\psi K_{s}\right) \&\left|\varepsilon_{k}\right|$ to extract
$\mathrm{A}, \bar{\rho}, \bar{\eta}$
\square Though many measurements are rather precise already the precision of the UT is limited by non gaussian errors in theoretical quantities
 $\Gamma^{\text {th }}(b \rightarrow u, c / v), \quad B_{k}, f_{B} \vee B_{B}, \xi$
\square CKM tests need to be based on a conservative, robust method with a realistic treatment of uncertainties to reduce the sensitivity to avoid fake conflicts or fluctuations
\square Only then we can believe that any observed significant conflict is real indicating the presence of New Physics

Super B-factory workshop Hawaii, 21-01-04

G. Eigen, U Bergen

Global Fit Methods

\square Different approaches exist:
$>$ The scanning method
a frequentist approach first developed for the BABAR physics book (M. Schune, S. Plaszynski), \longrightarrow extended by Dubois-Felsmann et al
$>$ RFIT, a frequentist approach that maps out the theoretical parameter space in a single fit A.Höcker et al, Eur.Phys.J. C21, 225 (2001)
$>$ The Bayesian approach that adds experimental \& theoretical errors in quadrature M. Ciuchini et al, JHEP 0107, 013 (2001)
$>$ A frequentist approach by Dresden group K. Schubert and R. Nogowski
$>$ The PDG approach F. Gilman, K. Kleinknecht and D. Renker

Model-independent Analysis of UT

- New Physics is expected to affect both $B_{d} \bar{B}_{d}$ mixing \& $B_{s} \bar{B}_{s}$ mixing introducing new CP-violating phases that differ from SM phase
\square This is an extension of the scenario discussed by Y. Nir in the BABAR physics book to $B_{s} B_{s}$ mixing and $b \rightarrow s s s$ penguins Y. Okada has discussed similar ideas
\square Yossi considered measurements of $V_{u b} / V_{c c p}, \Delta m_{B d}, a_{\psi k s}, a_{A T K}$ we extend this to $\Delta m_{B s}, a_{\phi k_{s}}\left(a_{\eta^{\prime} k s}\right)$ in addition to $\varepsilon_{k}, \gamma(D K)$
\square In the presence of new physics:
i) b \rightarrow ū̄d: $\mathbf{a}_{\pi \pi}=\mathbf{a}_{\mathrm{CP}}\left(\pi^{+} \pi^{-}\right)$
$b \rightarrow \mathbf{c e s}: \quad a_{\psi K \mathrm{~S}}=\mathbf{a}_{\mathbf{C P}}\left(\psi \mathbf{K}_{\mathrm{s}}^{0}\right)$
remain primarily tree level
ia) $\mathbf{b} \rightarrow \mathbf{s} \overline{\mathbf{s} s}: \quad \mathbf{a}_{\phi \mathrm{Ks}}=\mathbf{a}_{\mathrm{CP}}\left(\phi \mathbf{K}_{\mathrm{s}}^{0}\right) \quad$ remains at penguin level
ii) There would be a new contribution to KK mixing constraint: small ε_{K} (ignore new parameters)
iii) Unitarity of the 3 family CKM matrix is maintained if there are no new quark generations

Model-independent Analysis of UT

\square Under these circumstances new physics effects can be described by 4 parameters: $r_{d}, \theta_{d}, r_{s}, \theta_{s}$

$$
\left(\frac{\left\langle\mathbf{B}_{\mathrm{d}, s}^{0}\right| \mathbf{H}_{\mathrm{eff}}^{\text {full }}\left|\overline{\mathbf{B}}_{\mathrm{d}, s}^{0}\right\rangle}{\left\langle\left\langle\mathbf{B}_{\mathrm{d}, s}^{0}\right| \mathbf{H}_{\mathrm{eff}}^{\mathrm{SM}} \mid \overline{\mathbf{B}}_{\mathrm{d}, s}^{0}\right\rangle}\right)=\left(\mathbf{r}_{\mathrm{d}, \mathrm{~s}} \mathbf{e}^{\mathrm{i} \theta_{\mathrm{d}, s}}\right)^{2}
$$

$\square \quad$ Our observables are sensitive to r_{d}, θ_{d}, r_{s} induced by mixing (no $\theta_{\text {s }}$ sensitive observable)

In addition, we are sensitive to a new phase $\theta_{s}{ }^{\prime}=\varphi_{s}-\theta_{d}$ in $b \rightarrow s \bar{s}$ transitions
\square Thus, New Physics parameters modify the parameterization of following observables

$$
\begin{array}{cc}
\mathbf{a}_{\psi \mathbf{K}_{\mathrm{s}}^{0}}=\sin \left(2 \beta+2 \theta_{\mathbf{d}}\right) & \mathbf{a}_{\phi \mathbf{K}_{\mathrm{s}}^{0}}=\sin \left(2 \beta+2 \varphi_{\mathrm{s}}\right) \\
\mathbf{a}_{\pi^{+} \pi^{-}}=\sin \left(\mathbf{2} \alpha-2 \theta_{\mathbf{d}}\right) & \\
\Delta \mathbf{m}_{\mathbf{B}_{\mathbf{d}}}=\mathbf{C}_{\mathbf{t}} \mathbf{R}_{\mathbf{t}}^{\mathbf{2}} \mathbf{r}_{\mathbf{d}}^{\mathbf{2}} & \Delta \mathbf{m}_{\mathbf{B}_{\mathbf{s}}}=\mathbf{C}_{\mathbf{t}} \mathbf{R}_{\mathbf{t}}^{2} \xi^{2} \mathbf{r}_{\mathbf{s}}^{\mathbf{2}} \\
\text { Super B-factory workshop Hawaii, 21-01-04 } & \text { G. Eigen, U Bergen }
\end{array}
$$

The Scanning Method

\square The scanning method is an unbiased, conservative approach to extract $A, \bar{\rho}, \bar{\eta}$ \& New Physics parameters from the observables
\square We have extended the method of the BABAR physics book (M.H. Schune and S. Plaszczynski) to deal with the problem of non-Gassian theoretical uncertainties in a consistent way
\square We factorize quantities affected by non-Gaussian uncertainties $\left(\Delta_{\text {th }}\right)$ from the measurements
\square We select specific values for the theoretical parameters $\Gamma^{\text {th }}(\mathrm{B} \rightarrow \rho / v), \Gamma^{\text {th }}(\mathrm{b} \rightarrow \mathrm{ulv}), \Gamma^{\mathrm{th}}(\mathrm{b} \rightarrow \mathrm{clv}), \mathrm{F}_{\mathrm{D}^{*}}(\mathbf{1}), \mathrm{B}_{\mathrm{K}}, \mathrm{f}_{\mathrm{B}} \sqrt{\mathrm{B}_{\mathrm{B}}}, \xi$ \& perform a maximum likelihood fit using a frequentist approach

The Scanning Method

- A particular set of theoretical parameters we call a "model" M \& we perform a χ^{2} minimization to determine $A, \bar{\rho}, \bar{\eta}, \mathbf{r}_{\mathrm{d}}, \theta_{\mathrm{d}}, \mathbf{r}_{\mathrm{s}}, \varphi_{\mathrm{s}}$

$$
\chi_{\mathbf{M}}^{2}(\mathbf{A}, \bar{\rho}, \bar{\eta})=\sum\left(\frac{\langle\mathbf{Y}\rangle-\mathbf{Y}_{\mathbf{M}}\left(\mathbf{A}, \bar{\rho}, \bar{\eta}, \mathbf{r}_{\mathrm{d}}, \boldsymbol{\theta}_{\mathrm{d}}, \mathbf{r}_{\mathrm{s}}, \varphi_{\mathrm{s}}\right) \otimes \mathbf{F}(\mathbf{x})}{\sigma_{\mathbf{Y}}}\right)^{2}
$$

\square Here <y> denotes an observable \& σ_{y} accounts for statistical and systematic error added in quadrature, while $F(x)$ represents the theoretical parameters affected by non-Gaussian errors
\square For Gaussian error part of the theoretical parameters, we also include specific terms in the χ^{2}
\square We fit many individual models scanning over the allowed theoretical parameter space for each of these parameters

- We consider a model consistent with data, if $P\left(\chi^{2} M_{\text {min }}>5 \%\right.$ $>$ For these we determine $A, \bar{\rho}, \bar{\eta}, \mathbf{r}_{\mathrm{d}}, \theta_{\mathrm{d}}, \mathbf{r}_{\mathrm{s}}, \varphi_{\mathrm{s}}$ and plot contours
$>$ The contours of various models are overlayed
$>$ We can also study correlations among theoretical parameters extending their range far beyond that specified by theorists

The χ^{2} Function in Model-independent Analysis

$$
\begin{aligned}
& \chi_{\mathrm{M}}^{2}(\mathrm{~A}, \bar{\rho}, \bar{\eta})=\left(\frac{\left\langle\Delta \mathrm{m}_{\mathrm{B}_{\mathrm{d}}}\right\rangle-\Delta \mathrm{m}_{\mathrm{B}_{\mathrm{d}}}\left(\mathrm{~A}, \bar{\rho}, \bar{\eta}, \mathrm{r}_{\mathrm{d}}\right)}{\sigma_{\Delta \mathrm{m}_{\mathrm{B}_{\mathrm{d}}}}}\right)^{2}+\left(\frac{\left.\left\langle\mathbf{V}_{\mathrm{cb}} \mathbf{F}(\mathbf{1})\right\rangle-\left.\mathrm{A}^{2} \lambda^{4} \mathbf{F}(\mathbf{1})\right|^{2}\right)}{\sigma_{\mathrm{V}_{\mathrm{cb}} \mathrm{~F}(1)}}\right)^{2}+\left(\frac{\left\langle\mathbf{B}_{\mathrm{cl} v}\right\rangle-\tilde{\Gamma}_{\mathrm{cl} v} \mathrm{~A}^{2} \lambda^{4} \tau_{\mathrm{b}}}{\sigma_{\mathrm{B}_{\mathrm{cl} v}}}\right)^{2} \\
& +\left(\frac{\left(\mathbf{B}_{\rho l v}\right\rangle-\tilde{\Gamma}_{\rho l v}^{\mathrm{r}} \mathrm{~A}^{2} \lambda^{6} \tau_{\mathrm{B}}\left(\rho^{2}+\eta^{2}\right)}{\sigma_{\mathrm{B}_{\rho l v}}}\right)^{2}+\left(\frac{\left\langle\mathbf{B}_{\mathrm{ul} v}\right\rangle-\tilde{\Gamma}_{\mathrm{ul} v}^{\mathrm{r}} \mathrm{~A}^{2} \lambda^{6} \tau_{\mathrm{b}}\left(\rho^{2}+\eta^{2}\right)}{\sigma_{\mathrm{B}_{\mathrm{ulv}}}}\right)^{2}+\left(\frac{\left\langle\varepsilon_{\mathrm{K}}\right\rangle-\varepsilon_{\mathrm{K}}(\mathrm{~A}, \bar{\rho}, \bar{\eta})}{\sigma_{\varepsilon}}\right)^{2} \\
& +\left(\frac{\left\langle\mathbf{a}_{\psi \mathbf{K}_{\mathrm{s}}}-\sin 2 \beta\left(\bar{\rho}, \bar{\eta}, \theta_{\mathrm{d}}\right)\right.}{\sigma_{\sin 2 \beta}}\right)^{2}+\left(\frac{\left.\Delta \mathrm{m}_{\mathbf{B}_{\mathrm{s}}}\right)-\Delta \mathrm{m}_{\mathbf{B}_{\mathrm{s}}}\left(\mathrm{~A}, \bar{\rho}, \bar{\eta}, \mathrm{r}_{\mathrm{s}} / \mathbf{r}_{\mathrm{d}}\right)}{\sigma_{\Delta \mathrm{m}_{\mathrm{B}_{\mathrm{s}}}}}\right)^{2}+\left(\frac{\left(\mathbf{a}_{\phi \mathrm{K}_{\mathrm{s}}}-\sin 2 \beta\left(\bar{\rho}, \bar{\eta}, \varphi_{\mathrm{s}}\right)\right.}{\sigma_{\sin 2 \beta}}\right)^{2} \\
& +\left(\frac{\mathbf{a}_{\eta^{\prime} K_{\mathrm{s}}}-\sin 2 \beta\left(\overline{\boldsymbol{\rho}}, \bar{\eta}, \varphi_{\mathrm{y}}\right)}{\sigma_{\sin 2 \beta}}\right)^{\overline{2}}+\left(\frac{\left\langle\mathbf{a}_{\pi \pi}\right\rangle-\sin 2 \alpha\left(\bar{\rho}, \bar{\eta}, \theta_{\mathrm{d}}\right)}{\sigma_{\sin 2 \alpha}}\right)^{2}+\left(\frac{\left.\mathbf{a}_{\mathrm{DK}}\right\rangle-\sin \gamma(\bar{\rho}, \bar{\eta})}{\sigma_{\sin \gamma}}\right)^{2} \\
& +\left(\frac{\left\langle B_{K}\right\rangle-B_{K}}{\sigma_{B_{K}}}\right)^{2}+\left(\frac{\left\langle\mathbf{f}_{B} \sqrt{B_{B}}\right)-f_{B} \sqrt{B_{B}}}{\sigma_{f_{B} \sqrt{B_{B}}}}\right)^{2}+\left(\frac{\langle\lambda)-\lambda}{\sigma_{\lambda}}\right)^{2}+\left(\frac{\left\langle\mathbf{m}_{t}\right\rangle-\mathbf{m}_{t}}{\sigma_{m_{t}}}\right)^{2}+\left(\frac{\left\langle m_{c}\right\rangle-\mathbf{m}_{c}}{\sigma_{m_{c}}}\right)^{2} \\
& +\left(\frac{\left\langle\mathbf{m}_{\mathrm{W}}\right\rangle-\mathbf{m}_{\mathrm{W}}}{\sigma_{\mathrm{M}_{\mathrm{W}}}}\right)^{2}+\left(\frac{\langle\boldsymbol{\xi}-\boldsymbol{\xi}}{\sigma_{\xi}}\right)^{2}+\left(\frac{\left.\tau_{\mathrm{B}^{0}}\right)-\tau_{\mathrm{B}^{0}}}{\sigma_{\tau_{\mathrm{B}^{0}}}}\right)^{2}+\left(\frac{\left\langle\tau_{\mathrm{B}^{+}}\right\rangle-\tau_{\mathrm{B}^{+}}}{\sigma_{\tau_{\mathrm{B}^{+}}}}\right)^{2}+\left(\frac{\tau_{\mathbf{B}_{\mathrm{s}}}-\tau_{\mathbf{B}_{\mathrm{s}}}}{\sigma_{\tau_{\mathrm{B}_{\mathrm{s}}}}}\right)^{2} \\
& +\left(\frac{\left\langle\tau_{\Lambda_{\mathrm{b}}}\right\rangle-\tau_{\Lambda_{\mathrm{b}}}}{\sigma_{\tau_{\Lambda_{\mathrm{b}}}}}\right)^{\mathbf{2}}+\left(\frac{\left\langle\mathbf{f}_{\mathbf{B}^{0,+}}^{\mathrm{Z}}\right)-\mathbf{f}_{\mathbf{B}^{0,+}}^{\mathrm{Z}}}{\sigma_{\mathbf{f}_{\mathrm{B}^{0},+}^{\mathrm{Z}}}}\right)^{\mathbf{2}}+\left(\frac{\left\langle\mathbf{f}_{\mathbf{B}_{\mathrm{s}}}^{\mathrm{Z}}\right\rangle-\mathbf{f}_{\mathbf{B}_{\mathrm{s}}}^{\mathrm{Z}}}{\sigma_{\mathbf{f}_{\mathrm{B}_{\mathrm{s}}}^{\mathrm{Z}}}}\right)^{\mathbf{2}}+\left(\frac{\left\langle\mathbf{f}_{\mathbf{B}^{0,+}}\right)-\mathbf{f}_{\mathbf{B}^{0,+}}}{\sigma_{\mathbf{f}_{\mathrm{B}^{0,+}}}}\right)^{\mathbf{2}}
\end{aligned}
$$

Semileptonic Observables

- Presently, consider 11 different observables
$>V_{c b}$
excl: $\quad \mathbf{R}(\omega=\mathbf{1})\rangle=\left.\langle | \mathbf{V}_{\mathbf{c b}}\right|_{\text {excl }} \mathbf{F}_{\mathbf{D}^{*}(\mathbf{1})} \quad \begin{aligned} & \text { phase space corrected rate in } \\ & B \rightarrow D^{*} \mid v\end{aligned}$

$\mathrm{K}^{\circ} \bar{K}^{\circ} \mathrm{CP}$-violating \& $\mathrm{BO}^{0} \bar{B}^{0}$-mixing Observables

CP-violating Observables in BB System

Super B-factory workshop Hawaii, 21-01-04

$$
\begin{gathered}
\sin 2 \beta(\bar{\rho}, \bar{\eta})=\frac{2 \bar{\eta}(1-\bar{\rho})}{\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}\right]} \\
\sin 2 \beta(\bar{\rho}, \bar{\eta})=\frac{2 \bar{\eta}(1-\bar{\rho})}{\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}\right]} \\
\sin 2 \alpha(\bar{\rho}, \bar{\eta})=\frac{2 \bar{\eta}\left(\bar{\eta}^{2}+\bar{\rho}(\bar{\rho}-1)\right)}{\left(\rho^{2}+\eta^{2}\right)\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}\right]} \\
\sin 2 \gamma(\bar{\rho}, \bar{\eta})=\frac{2 \bar{\eta}}{\left(\rho^{2}+\eta^{2}\right)}
\end{gathered}
$$

\square Note, that presently no extra strong phases in $a_{\pi \pi}$ are included
\square In future will include this adding $C_{\pi \pi}$ in the global fits

Observables

Observable	Present Data Set	2011 Data Set
$\mathrm{Y}(4 \mathrm{~S}) \mathrm{B}(\mathrm{b} \rightarrow \mathrm{ulv})\left[10^{-3}\right]$	$1.95 \pm 0.19_{\text {exp }} \pm 0.31_{\text {th }}$	$1.85 \pm 0.06_{\text {exp }}$
LEP $B(b \rightarrow u l v)\left[10^{-3}\right]$	$1.71 \pm 0.48_{\text {exp }} \pm 0.21_{\text {th }}$	$1.71 \pm 0.48_{\text {exp }}$
$\mathrm{Y}(4 \mathrm{~S}) \mathrm{B}(\mathrm{b} \rightarrow \mathrm{clv})$	0.1090 ± 0.0023	0.1050 ± 0.0005
LEP $B(b \rightarrow c \mid v)$	0.1042 ± 0.0026	0.1042 ± 0.0026
$\mathrm{Y}(4 \mathrm{~S}) \mathrm{B}(\mathrm{B} \rightarrow \mathrm{plv})\left[10^{-3}\right]$	$2.68 \pm 0.43_{\text {exp }} \pm 0.5_{\text {th }}$	3.29 ± 0.14
$\mathrm{V}_{\mathrm{cb}} \mid \mathrm{F}(1)$	0.0367 ± 0.008	0.0378 ± 0.00038
$\Delta m_{B d}\left[p^{-1}\right]$	0.502 ± 0.007	0.502 ± 0.00104
$\Delta m_{B S}\left[p^{-1}\right]$	14.4 @90\% CL $\rightarrow(20 \pm 5)$	25 ± 1
$\left\|\varepsilon_{k}\right\| \quad\left[10^{-3}\right]$	2.282 ± 0.017	2.282 ± 0.017
λ	0.2235 ± 0.0033	0.2235 ± 0.0033
$\sin 2 \beta$ from $\psi K_{\text {s }}$	0.736 ± 0.049	0.736 ± 0.01
$\sin 2 \beta$ from $\phi K_{s}\left(\eta^{\prime} K_{s}\right)$	$-0.14 \pm 0.33(0.27 \pm 0.22)$	0.6 ± 0.15
$\sin 2 \alpha$	-0.4 ± 0.2	-0.4 ± 0.05
$\sin \gamma$	0.7 ± 0.5	0.7 ± 0.15

\square For other masses and lifetimes use PDG 2003 values

Theoretical Parameters

Parameter	Present Value	Expected Value in 2011
$F_{D^{*}}(1)$	0.87-0.95	0.90-0.92
$\Gamma(\mathrm{clv})$ [ps ${ }^{-1}$]	34.1-41.2	$35.7-39.2$
$\Gamma(\rho / v)\left[\mathrm{ps}^{-1}\right]$	$12.0-22.2$	$11.0-13.4$
$\Gamma(u l v)\left[p s^{-1}\right]$	54.6-80.2	60.6-76.9
B_{k}	$0.74-1.0 \quad \sigma_{B k}= \pm 0.06$	$0.805-0.935 \sigma_{B k}= \pm 0.03$
$\mathrm{f}_{\mathrm{Bd}} / \mathrm{B}_{\mathrm{Bd}}[\mathrm{MeV}]$	$218-238 \sigma_{f B / B B}= \pm 30$	$223-233 \sigma_{\text {fBVBB }}= \pm 10$
ξ	$1.16-1.26 \sigma_{\xi}= \pm 0.05$	$1.16-1.26 \sigma_{\xi}= \pm 0.05$
η_{1}	$1.0-1.64$	1.0-1.64
η_{2}	$0.564-0.584$	$0.564-0.584$
η_{3}	$0.43-0.51$	$0.43-0.51$
η_{B}	0.54-0.56	0.54-0.56

Error Projections for CP Asymmetries

$\xrightarrow{\text { PEP-II, KEKB }}$

Super B-factory workshop Hawaii, 21-01-04
G. Eigen, U Bergen

Present Status of the Unitarity Triangle in SM Fit

\square SM fit to $A, \bar{\rho}, \bar{\eta}$ using present data set

\square Range of $\bar{\rho}-\bar{\eta}$ values resulting from fits to different models
$0.116 \leq \bar{\rho} \leq 0.335{ }_{-0.11}^{+0.027} \quad 0.272 \leq \bar{\eta} \leq 0.411{ }_{-0.026}^{+0.036}$

Present Results

Parameter	Scan Method
ρ	$0.116-0.335, \sigma= \pm_{0.11}^{0.027}$
η	$0.272-0.411, \sigma= \pm 8.836$
A	$0.80-0.89, \sigma= \pm \pm_{0.024}^{0.028}$
m_{c}	$1.06-1.29, \sigma= \pm{ }_{0.18}^{0.18}$
β	$(20.7-27.0)^{0}, \sigma= \pm \pm_{2.6}^{7.1}$
α	$(84.6-117.2)^{0}, \sigma= \pm \pm_{15.8}^{5.4}$
γ	$(40.3-72.5)^{0}, \sigma= \pm{ }_{3.3}^{8.3}$

Present Status of the $\bar{\rho}-\bar{\eta}$ Plane

\square Global fits to present extended data set including $a_{q k s}, a_{\pi \pi} \& \gamma(D K)$

\square The introduction of new parameters $r_{d}, \theta_{d}, r_{s}, \& \varphi_{s}$ weakens the $\sin 2 \beta$ constraint
\square Weakening of $\Delta m_{\text {Bd }} \Delta m_{Q_{s}} \& \sin 2 \alpha$ bounds is not visible due to large errors \& impact of $V_{u b} / V_{c b}, \varepsilon_{k}, \sin \gamma$ constraints
\square Negative ρ region is rejected by $\sin \gamma$ constraint
Super B-factory workshop Hawaii, 21-01-04
G. Eigen, U Bergen

Present Status of $r_{d}-\theta_{d}$ Plane \& $r_{s} / r_{d}-\varphi_{s}$ Plane

\square Global fits to present extended data set including $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$

$\square r_{d}-\theta_{d}$ plane is consistent with SM
\square Second region ($r_{d}<1, \theta_{d}<0$) is rejected by $\sin \gamma$ constraint
$\square r_{s}-\varphi_{s}$ plane is consistent with SM for some models
\square Second region inconsistent with $S M$ is visible

Super B-factory workshop Hawaii, 21-01-04

Present Status of the $\bar{\rho}-\bar{\eta}$ Plane

\square Old global fits to present data set excluding $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$ fitting only to r_{d}, θ_{d}

\square The introduction of new parameters r_{d}, θ_{d} weakens the $\sin 2 \beta$ constraint $\Delta m_{B d} \& \Delta m_{B s}$ biunds
\square Fits extend into negative ρ region

Present Status of $r_{d}-\theta_{d}$ Plane \& $r_{s} / r_{d}-\theta_{s}$ Plane

\square Old global fits to present data set excluding $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$ fitting only to r_{d}, θ_{d}

$\square \quad r_{d}-\theta_{d}$ plane is consistent with SM
\square Second region ($r_{d}<1, \theta_{d}<0$) is visible

Possible Status of the $\bar{\rho}=\bar{\eta}$ Plane in 2011

\square Global fits to data set expected in 2011 including $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$

\square Reduced errors yield smaller-size contours and a reduced \# of accepted models
\square The $\sin 2 \beta$ constraint remains weak, now see also weakening $\Delta m_{B s}$ bound

Possible Status of $r_{d}-\theta_{d} \& r_{s} / r_{d}-\varphi_{s}$ Planes in 2011

- Global fits to data set expected in 2011 including $a_{\phi k s,} a_{\pi \pi} \& \gamma(D K)$

$\square r_{d}-\theta_{d}$ plane is still consistent with SM
\square Size of contours are reduced substantially
$\square r_{s}-\varphi_{s}$ plane now is inconsistent ${ }_{0.4}^{0.5} \varphi_{s}$ with SM for some models
\square Second region inconsistent with SM disappears

Super B-factory workshop Hawaii, 21-01-04

Comparison of Results

\square Fit Results for parameterization with $r_{d}, \theta_{d}, r_{s}, \& \varphi_{s}$

Parameter	Present Results	Possible results in 2011
ρ	0.177-0.372, $\sigma= \pm{ }^{0.032}$	0.227-0.313, $\sigma= \pm \begin{aligned} & 0.013 \\ & 0.11\end{aligned}$
η	0.236-0.473, $\sigma= \pm_{0.017}^{0.025}$	0.329-0.351, $\sigma= \pm 0.887$
A	0.80-0.89, $\sigma= \pm 8.839$	0.81-0.88, $\sigma= \pm 0.025$
m_{c}	1.0-1.41, $\sigma= \pm$0.16 0.18	1.09-1.29, $\sigma= \pm{ }_{0}^{0.09}$
β	$(17.9-28.6)^{0}, \sigma= \pm 3: 8$	$(23.1-26.9)^{0}, \sigma= \pm 1.1$
α	(96.3-123.6) ${ }^{0}, \sigma= \pm 5.4$	$(101.4-105.1)^{0}, \sigma= \pm \frac{1.9}{}$
γ	$(34.4-61.3)^{0}, \sigma= \pm 4.4$	$(48.1-55.5)^{0}, \sigma= \pm \pm_{1.3}^{1.5}$

Possible Status of the $\bar{\rho}=\bar{\eta}$ Plane in 2011

\square Global fits to data set expected in 2011 including $a_{\phi k s}$, $a_{\pi \pi}$. $\gamma(D K) \& a_{\eta^{\prime} K s}$

\square Inclusion of $a_{n^{\prime} k s}$ results in reduced countours

Possible Status of $r_{d}-\theta_{d} \& r_{s} / r_{d}-\varphi_{s}$ Planes in 2011

- Global fits to data set expected in 2011 including $a_{\phi k s}, a_{\pi \pi}, \gamma(D K)$

$\square r_{d}-\theta_{d}$ plane is still consistent with SM
\square Inclusion of $a_{n^{\prime} \cdot \leqslant s}$ reduces $r_{d}-\theta_{d}$ contour sizes
- $r_{s}-\varphi_{s}$ plane remains inconsistent with SM for some models
\square Inclusion of $a_{n^{\prime} k_{s}}$ reduces $r_{s} / r_{d}-\varphi_{s}$ contour sizes

Super B-factory workshop Hawaii, 21-01-04

Possible Status of the $\bar{\rho}-\bar{\eta}$ Plane after 2011

\square Global fits to data set expected in 2011 including $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$ with $a_{\phi k s}=-0.96 \pm 0.01 \& a_{\pi \pi}=-0.95 \pm 0.05$

\square Using Belle central values with small errors changes the picture \Rightarrow obtain 2 separated regions in $\bar{\rho}-\bar{\eta}$ plane
\square Weakening of $\sin 2 \beta, \Delta m_{B d}, \Delta m_{B s} \& \sin 2 \alpha$ bounds is apparent now

Possible Status of $r_{d}-\theta_{d} \& r_{s} / r_{d}-\varphi_{s}$ Planes after 2011

\square Global fits to data set expected in 2011 including $a_{\phi k s}, a_{\pi \pi} \& \gamma(D K)$ with $a_{\phi k s}=-0.96 \pm 0.01 \& a_{\pi x}=-0.95 \pm 0.05$

- $r_{d}-\theta_{d}$ plane is shifted to $r_{d}>0, \theta_{d}>0$ values
\square Size of contours are reduced substantially
- $2 \varphi_{s}>0$ regions are favored
$\square r_{s}-\varphi_{s}$ plane now is highly inconsistent with SM

Super B-factory workshop Hawaii, 21-01-04

Conclusions

\square Model-independent analyses will become important in the future

- The scanning method provides a conservative, robust procedure with a reasonable treatment of non-gaussian theor. uncertainties \longrightarrow This allows to avoid fake conflicts or fluctuations
\longrightarrow This is crucial for believing that any observed significant discrepancy is real indicating New Physics
\square Due to the large theoretical uncertainties all measurements are presently consistent with the SM expectation
\square Deviation of $a_{c p}\left(\phi K_{s}\right)$ from $a_{C p}\left(\psi K_{s}\right)$ is interesting but not yet significant, similar comment holds for Belle's $S_{\pi \pi}$ \& $A_{\pi \pi}$ results
\square If errors get reduced as prognosed, $\bar{\rho}-\bar{\eta}$ plane will be substantially reduced in 2011
\square The fits indicate that the impact of New Physics may be less visible in $\bar{\rho}-\bar{\eta}$ plane but show up in $r_{d}-\theta_{d}$ or $r_{s}-\varphi_{s}$ planes
\square In the future we will incorporate other $\sin 2 \alpha$ measurements and add further parameters for strong phases
\square It is useful to include $\sin (2 \beta+\gamma)$ from $\left.B \rightarrow D{ }^{(*}\right) \pi$ modes

