Super-B-Factory Collider Work at SLAC

U. Wienands, for John T. Seeman SLAC Hawaii Super-B-Factory Meeting April 20, 2005

The PEP-II Team

August 2004

Topics

- Brief PEP-II status and plans
- Super-B-Factory Collider parameter studies
- Conclusions

SLAC Beam Lines

PEP-II Interaction Region Components near BaBar

PEP-II arc section

PEP-II HER RF cavities

HER Cavities Region 12

8-19-97

PEP-II Performance Measure: Peak Luminosity

Trickle injection at the B Factories

Overall Parameters and Goals

/Twice design

Parameter	Units	Design	Best in collision	Future 2007 goal	
I+	mA	2140	2450	4500	
I-	mA	750	1550 *	2200	
Number bunches		1658	1588	1715	
β_y^*	mm	15-20	11	8.5	
ξ _y		0.03	0.045, 0.07	0.055-0.08	
Luminosity	x10 ³³	3.0	9.2	23	
Integrated lumi / day	pb ⁻¹	130	710	1800	

Over three times design

Over five times design!

PEP-II Run Schedule

- SLAC was shut down until early April due to electrical accident & ensuing safety reviews
- PEP-II Run 5 started April 15, 2005.
- Will collide steadily from April 2005 through July 2006 with a one month break in October 2005.
- Down in 2006 August through November for BaBar and PEP-II upgrade work.
- Three month down in Summer-Fall 2007 for LCLS work.
- Collide through September 2008.

Integrated Luminosity Goal

Upgrades for Run 5

- One additional rf station for each HER and LER
 - HER beam current >1.8 A, LER, 3.6 A
- Removed NEGs in the LER upstream of BaBar
 - rf power leaking through screen caused severe heating.
 - more to be replaced in October

Existing 3082 chamber

PEP-II/BaBar Roadmap: Super B-Factory Study May 2004

- The Roadmap Committee is studying the long range future of PEP-II and BaBar with a possible large upgrade at the end of the decade.
- A Super-PEP-II could produce 10 ab^{-1} per year with a peak luminosity of 7 x 10³⁵/cm²/s.
- Accelerator parameter goals have been set and work towards a solid design has started.

Parameter	LER	HER	
Energy (GeV)	3.5	8	
RF frequency (MHz)	952	952	
Vertical tune	72.64	56.57	
Horizontal tune	74.51	58.51	
Current (A)	15.5	6.8	
Number of bunches	6900	6900	
Ion gap (%)	1.2	1.2	
HER RF klystron/ <u>cav</u>	32/64	25/50	
HER RF volts (MV)	43	33	
βy* (mm)	1.5	1.5	
β_x^* (cm)	15	15	
Emittance (x/y) (nm)	28/0.3	28/0.3	
σ _z (mm)	1.75	1.75	
Hourglass-X-angle factor	0.80	0.80	
Crossing angle(mrad)	15	15	
IP <u>Horiz</u> . size (µm)	65	65	
IP <u>Vert</u> . size (µm)	0.6	0.6	
Horizontal ξ _x	0.105	0.105	
Vertical ξ _y	0.107	0.107	
Lumin. (x10 ³⁴ /cm ² /s)	70	70	

Recommended scenario: 7×10^{35}

- Replace present RF with SC 952 MHz frequency over period of time.
- Use 8 x 3.5 GeV with up to 15.5 A x 6.8 A.
- New LER and HER vacuum chambers with antechambers for higher power (x 4).
- Replace LER magnets to soften radiation and resistive wall losses; rework HER magnets as well.
- Push β_y^* to 1.7 mm: need new IR (SC quadrupoles) with 15 mrad crossing angle and crab cavities with bunch lengths of 1.8 mm.
- New bunch-by-bunch feedback for 6900 bunches (every bucket) at 1 nsec spacing. (Presently designing feedback system being 0.6-0.8 nsec spacing.)

SBF Overall Parameters and Goals

Parameter	Units	Best of PEP-II	7E35 SBF	1E36 SBF	
I+	А	4.5	6.8	10.0	
I-	А	2.2	15.5	23.0	
Number bunches		1715	6900	6900	
β_y^*	mm	8.5	1.8	1.7	
ξy		0.065	0.11	0.11	
Luminosity	x10 ³⁴	2.3	70	100	
Integrated lumi / day	fb ⁻¹ /day	1.8	50	75	

Achieving Super B Luminosities

Higher Currents:

- o More rf power, cooling, injector
- o More HOM heating (more bunches)
- o Beam instabilities
- o Electron clouds, fast ions

- Smaller β_{y}^{*} :
 - o Smaller physical/dynamic aperture
 - o Shorter lifetime, more background

Shorter σ_z :

- o More HOM heating
- o Coherent synchrotron radiation
- o Shorter lifetime, more background

Higher tune shifts:

- o Head-on collisions replaced by angled crossing
- o Degrades maximum tune shift unless crabbing cavities used

$$L \propto n\xi_y \frac{EI_b}{\beta_y^*}$$

Crossing-Angle Experiment

Initial IR Design for a Super B-Factory

e36 B-factory IR +/- 14 mrads RevD

New IR magnet design (Parker)

BROOKHAVEN Superconducting Magnet Division Radial Buildup: Assume Same As BEPC-II.

Unlike HERA-II, the BEPC-II magnets have inner/outer gas cooled heat shields plus LHe cooling on both sides of the coil pack.

Note 45° taper as requested by experiment 139 mm warm ID 1302 mm cryostat OD

ACCIDE A-A

For BEPC-II we have just over 25 mm radial space between the inner coil and warm bore and just over 30 mm radial space between the outer coil radius and the outside of the cryostat^{*}.

New Rf system, s/c Technology

- 1...2 MV/cavity, 500 kW/coupler
- R/Q of 12Ω aimed at for beam stability
- 952 MHz => Potential for 6900 bunches
- up to 40 MW power to the beam (LER, 23 A)
- Support bunches as short as 1.8 mm

New cavity design for a SBF (SC, R/Q \approx 5 Ω)

New Magnet Systems/Lattices

- Low momentum compaction
 - short bunches without excessive rf voltage
 - increase stability against longitudinal multibunch instability
 - maintain reasonable synchrotron tune
 - (simulations predict high v_s to be detrimental to luminosity)
- Larger-aperture magnets than present PEP-II
 - allows increase of beam-pipe radius, lower res. wall loss
 - becoming an issue at SBF beam current & bunch length

Resistive-Wall Wake (bunch lengthening)

New bellows design with HOM absorber

Kurita Novokhatski Weathersby

SLAC Accelerator Department 🎎 LER ring (no IR yet)

M. Biagini

One sextant

Small positive momentum compaction, using present LER dipoles & quads (16 families), 3 sextupole families

Electron Cloud Instability

- PEP-II uses solenoidal fields and gaps in the fill to mitigate ECI
 - Experiment at end of Run 4: fill all gaps
 - Luminosity scaled with bunch#
 - =>probably don't need the gap at present beam current (2.6 A).
- At Super-B beam currents, these may not be sufficient
 - Investigate means to further reduce secondary emission in the vacuum system

Windings added for ECI reduction

Rectangular (!) groove surface profile design

M.P. and G. Stupakov

NLC

Scaling a factor \sim 5 from previous sample for PEP-II application

Special surface profile design, Cu OFHC. EDM wire cutting. Groove: 5mm depth, 2mm step, 0.25mm thickness.

More reduction with geometry

Preparing to install a test chamber rect. grooves in PEP-II, to be used for upgrade

Low-Secondary Yield Test Pipe

Detector Background Projections: DCH

Rule of thumb: tracking inefficiency increases by 1% per 3% increase in occupancy

M.Cristinziani

Luminosity Dependent Backgrounds

HER Radiative Bhabhas

Roadmap for the Future: Status Report

Wall-Plug Power

	Luminosity = 7.0 E+35		Luminosity = 1.0 E+36			
	LER	HER	Sum	LER	HER	Sum
Currents (A)	15.50	6.80		 23.00	10.00	
Energy (GeV)	3.50	8.00		3.50	8.00	
HOM Losses						
Cavity loss (MW)	1.73	0.25	1.97	6.65	0.78	7.43
Cavity R/O (Ω)	5.00	5.00		5.00	5.00	
Loss factor (V/pC)	0.29	0.29		0.29	0.29	
Number of cavities	24.00	18.00		42.00	26.00	
Resistive Wall (MW)	2.75	0.53	3.28	6.07	1.15	7.21
Cu coated Al Chamber R=45mm (V/pC)	10.92	10.92		10.92	10.92	
IP region (MW)	1.82	0.35	2.17	4.01	0.76	4.77
Loss factor (V/pC)	7.22	7.22		7.22	7.22	
Other HOMs (MW)	0.50	0.10	0.60	1.11	0.21	1.32
Loss factor (V/pC)	2.00	2.00		2.00	2.00	
Total HOM Losses (MW)	6.81	1.23	8.03	17.84	2.89	20.73
SR Losses						
loss per turn (MeV)	0.97	2.20		0.97	2.20	
SR power (MW)	15.04	14.96	30.00	22.31	22.00	44.31
Total RF Power (MW)	21.84	16.19	38.03	40.15	24.89	65.04
RF Efficiency (%)	50.00	50.00		50.00	50.00	
RF AC Power (MW)	43.68	32.37	76.06	80.29	49.79	130.08
Magnet AC Power (MW)	5.00	5.00	10.00	5.00	5.00	10.00
Cryogenics						
Loss per Cavity (W)	78.00	78.00		78.00	78.00	
Total Cavity Losses (kW)	1.87	1.40	3.28	3.28	2.03	5.30
Cryogenic Efficiency (%)	0.13	0.13		0.13	0.13	
Cryogenic AC Power (MW)	1.41	1.06	2.46	2.46	1.52	3.99
Injector, LCLS, SPEAR3 etc (MW)			40.00			40.00
injector, nono, or mito etc (inve)			10.00			10.00
TOTAL AC POWER (MW)	50.09	38.43	128.52	87.75	56.31	184.06

Conclusions

- PEP-II is again producing data.
- Present B-Factories will provide solid data for four or more years. PEP-II is heading towards 2.3 x 10³⁴ in three years.
- Super-B-Factory designs are stabilizing.
- Designs of a Super-B-Factory should allow for upgrade paths to allow the accelerator to remain competitive over its lifetime.

Important Factors in Upgrade Direction

- Accelerator project should have headroom:
 - Design for 7 x 10³⁵
 - Headroom for machine up to 1 x 10³⁶; requires additional RF, which can be staged into machine over time.
- Accelerator built in the timely manner with a rapid turn on.