10^{36} ???

20 Apr. 2005
K. Oide (KEK) @ Super B Workshop
- Shutdown for 18-26 months in 2009-2010 for the upgrade.
- 0.9 /ab/month in 2020.

LHCb may produce physics equivalent to 50 /ab in e+e- in some channels within a few years.

Shutdown SuperKEKB may produce physics equivalent to 50 /ab in e+e- in some channels within a few years.

9 /ab/year
3.5 × 10^{35} × 40 weeks

15 /ab/year

Installation of Crab Cavity

We are here.
An example why you need 10^{36} (giving a lecture to Buddhas)

\[B^0 \rightarrow K^{*0} \mu^+\mu^- \]

- Suppressed decay ($\Delta B = 1$ FCNC), $BR \sim 10^{-6}$
- Forward-backward asymmetry in the $\mu\mu$ rest-frame $A_{FB}(s)$ is sensitive probe of new physics [Ali et al]

\[A_{FB}(s) \]

LHCb: 4400 events/year, $S/B > 0.4$

$A_{FB}(s)$ reconstructed using toy MC
(two years data, background subtracted)
Zero point located to ± 0.04

ATLAS: 2000 events, $S/B = 7$ (30 fb$^{-1}$)
Three factors to determine the luminosity:

- **Stored current:**
 - 1.27/1.7 A (KEKB)
 - → 4.1/9.4 A (SuperKEKB)

- **Beam-beam parameter:**
 - 0.057 (KEKB)
 - → 0.19 (SuperKEKB)

- **Vertical β_v at the IP:**
 - 5.2/6.5 mm (KEKB)
 - → 3.0/3.0 mm (SuperKEKB)

Luminosity:
- 0.15×10^{35} cm$^{-2}$s$^{-1}$ (KEKB)
- 4×10^{35} cm$^{-2}$s$^{-1}$ (SuperKEKB)
SuperKEKB Machine Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>bare lattice</th>
<th>with beam-beam</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current (LER/HER)</td>
<td>I</td>
<td>9.4/4.1</td>
<td>A</td>
</tr>
<tr>
<td>Beam energy (LER/HER)</td>
<td>E</td>
<td>3.5/8.0</td>
<td>GeV</td>
</tr>
<tr>
<td>Emittance</td>
<td>ϵ_x</td>
<td>24</td>
<td>128</td>
</tr>
<tr>
<td>Horizontal beta at IP</td>
<td>β_x^*</td>
<td>20</td>
<td>2.3</td>
</tr>
<tr>
<td>Vertical beta at IP</td>
<td>β_y^*</td>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td>Horizontal beam size</td>
<td>σ_x^*</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Vertical beam size</td>
<td>σ_y^*</td>
<td>0.73</td>
<td>1.23</td>
</tr>
<tr>
<td>Beam size ratio</td>
<td>$r = \sigma_y^/\sigma_x^$</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Crossing angle (30 mrad crab crossing)</td>
<td>θ_x</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Luminosity reduction</td>
<td>R_L</td>
<td>0.86</td>
<td>0.82</td>
</tr>
<tr>
<td>ξ_x reduction</td>
<td>R_{ξ_x}</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>ξ_y reduction</td>
<td>R_{ξ_y}</td>
<td>1.11</td>
<td>1.16</td>
</tr>
<tr>
<td>Reduction ratio</td>
<td>R_L/R_{ξ_y}</td>
<td>0.78</td>
<td>0.72</td>
</tr>
<tr>
<td>Horizontal beam-beam (estimated with S-S simulation)</td>
<td>ξ_x</td>
<td>0.152</td>
<td>0.041</td>
</tr>
<tr>
<td>Vertical beam-beam (estimated with S-S simulation)</td>
<td>ξ_y</td>
<td>0.215</td>
<td>0.187</td>
</tr>
<tr>
<td>Luminosity</td>
<td>L</td>
<td>4.0×10^{35}</td>
<td>cm$^{-2}$s$^{-1}$</td>
</tr>
</tbody>
</table>
Higher Order Mode Loss (K. Shibata, Y. Suetsugu)

Bellows - SuperKEKB

- Bellows chamber with a comb-type RF shield
 - Features
 - RF shield: nested comb teeth
 - Length: 10 mm, Width: 1 mm
 - Radial thickness: 10 mm,
 - High thermal strength
 - No radial step on the inner surface
 - Loss Factor (estimated by MAFIA T3)

\[k(3 \text{ mm}) = 4.1 \times 10^9 \text{ [V/C]} \]

\[\times 1000 \]

Total: \[k(3 \text{ mm}) = 4.1 \text{ [V/pC]} \]

\[P_{\text{HOM}} = 707 \text{ [kW]} \]

\[k(3\text{mm}) \text{ reduces to } \sim 40 \% \]
Coherent Synchrotron Radiation (T. Agoh)

KEKB

Bunch Length: $\sigma_z = 6\text{mm}$ \Rightarrow 3mm
Bunch Current: $I_b = 1.2\text{mA}$ \Rightarrow 2mA ($\approx 20\text{nC}$)

SuperKEKB

\Leftarrow Energy change by CSR
 for one particle,
 for one bend.

SuperKEKB (red line)
14 times larger ΔE
than KEKB (dotted line)

Square pipe
 $r = 47\text{mm}$
 (half height)
Crab crossing in the near future

- Crab crossing will boost the beam–beam parameter up to 0.19! (Strong–weak simulation)

\[\text{crossing angle } 22 \text{ mrad} \]

- Superconducting crab cavities are under development, will be installed in KEKB in early 2006.

K. Ohmi & M. Tawada

K. Hosoyama, et al
Can we increase the stored current?

• Bunch current has been already limited by HOM and CSR.
• More bunches are necessary: more RF buckets: 1–1.5 GHz.
• Completely new RF system:
 – Discard all the existing 500 MHz system, which has been developed for 25 years since TRISTAN.
 – Develop klystrons, power supplies, cavities at a new frequency.
 – Superconducting cavity’s HOM absorber will be more than difficult.
 – Feasibility of ARES at higher frequency is unknown.
 – 300 – 500 M$, at least 15 FTE × 5 years. (Where are those people?)
 – In parallel with the operation of the existing system.
• Higher current needs different design of the vacuum system, which requires all magnets to be replaced for larger aperture.
• Is the shorter bunch spacing safe with parasitic collision?
• More electricity (150–200 MW!), additional power stations.
• Bad luminosity/cost.
ARES Cavity

- Passive stabilization with huge stored energy.
- Eliminates unnecessary modes by a coupling of 3 cavities.
- Higher order mode dampers and absorbers.
- No need for longitudinal bunch-by-bunch feedback.
- No transverse instability arises from the cavities.

Superconducting Cavity

- World’s highest current, 1.3 A.
- Input coupler has been operated up to 380 kW.
- Ferrite HOM absorber working at 12 kW.
ARES upgrade for SuperKEKB

- Larger detuning
 - Change energy ratio: $U_s/U_a = 9 \rightarrow 15$
 - Small modification on the window size of A-cav
 - -1 mode growth time: 0.3 ms to 1.6 ms.
 - Then the -1 (and -2) modes related to the fundamental mode will be suppressed by a FB system in the RF control system.
 (need bunch-by-bunch FB to suppress ARES HOM & $0/\pi$ mode instability)

- Higher HOM power
 - Upgrade of HOM damper

- Higher input RF power
 - 400 kW/cavity \rightarrow 800 kW/cavity
 - R&D of input coupler using new test-stand.

T. Kageyama
Achievements of KEKB-SC

RF power absorbed by HOM dampers at 1.27 A

- A beam of 1.27 A in 1293 bunches induces the HOM of 14 - 16 kW for each module. ($\sigma_z=7$mm)
- The ratio of SBP / LBP is 7 kW / 9 kW.

S. Mitsunobu, T. Furuya
Summary

• Present design of SuperKEKB hits fundamental limits in the beam–beam effect and the bunch length (HOM & CSR).

• Higher current is the only way to increase the luminosity.

• Many technical and cost issues are expected with a new RF system.

• We need a completely different collider scheme.....
Construction schedule of SuperKEKB RF system

---|---|---|---|---|---|---|---|---|---|---|---|---
KEKB | KEKB operation | KEKB shut down |
SuperKEKB | New buildings | SuperKEKB construction | SuperKEKB commissioning |
---|---|---|---|---|---|---|---|---|---|---|---|---
Operating stations (cavities)

D1	2 (Crabs)	→	→	→	→							
D2	2 (Crabs)	→	→	→	→							
D4	3 (6A)	→	→	→	10 (10AH)	→	→	→	→	14 (14AH)		
D5	3 (6A)	→	4 (6A)	→	10 (2AH)	→	6 (2H+4L)	→	10 (2H+8L)			
D7	5 (10A)	→	→	→	10 (10AL)	→	→	→	→			
D8	5 (10A)	→	→	→	10 (10AL)	→	→	→	→			
D10	4 (4S)	→	→	→	6 (6SH)	→	6 (6SH)	→	→	→	→	
D11	4 (4S)	→	6 (4S+2C)	→	→	→	→	→	→	→	→	
DR	1 (1A)	→	→	→	→	→	→	→	→	→	→	→

Total number of operating stations: 24 → 27 → → 49 → 53 → 61

ARES-AC modify 1 set

<table>
<thead>
<tr>
<th>Design</th>
<th>Prototype</th>
<th>Beam Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricate</td>
<td>Install</td>
<td></td>
</tr>
</tbody>
</table>

ARES-AC modify 20 sets

<table>
<thead>
<tr>
<th>1st S-cav</th>
<th>S-cavity only</th>
<th>Beam pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricate</td>
<td>Install 4</td>
<td>Install 5</td>
</tr>
<tr>
<td>Move 4</td>
<td>Install 1@DR</td>
<td>Install 3</td>
</tr>
</tbody>
</table>

ARES new full set

<table>
<thead>
<tr>
<th>4 additional SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricate</td>
</tr>
</tbody>
</table>

Enlarge beam pipe for existing SCC

<table>
<thead>
<tr>
<th>Beam pipe</th>
</tr>
</thead>
</table>

Crab RF system @Nikko

<table>
<thead>
<tr>
<th>Construct</th>
</tr>
</thead>
</table>

Crab RF system @Tsukuba

<table>
<thead>
<tr>
<th>Construct</th>
</tr>
</thead>
</table>

RF system for Damping Ring

<table>
<thead>
<tr>
<th>Construct</th>
</tr>
</thead>
</table>

Klystron fabrication

| 1 | 3 | 4 | 4 | 5 | 4 | 4 | 3 | 3 | 3 | 3 |

Power supply for 2 klystrons

| 3 | 3 | 3 | 3 | 2 | 1 | 2 | 2 |

High-power and cooling system

| 2 | 1 | 8 | 8 | 8 | 2 | 4 | 4 |

Low-level RF system

| 2 | 1 | 8 | 8 | 8 | 2 | 4 | 4 |

Reinforce vapor cooling system

| D4 | D7 | D8 | D5 |

R&Ds

| R&D of HOM damper, Coupler, Control, etc. |

Ver. 1.4 2004.12.22