1036 ???

20 Apr. 2005 K. Oide (KEK) @ Super B Workshop

- Shutdown for 18-26 months in 2009-2010 for the upgrade.
- 0.9 /ab/month in 2020.

An example why you need 10³⁶ (giving a lecture to Buddhas)

http://ckm2005.ucsd.edu/agenda/thu1/forty.pdf

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

- Suppressed decay ($\Delta B = 1$ FCNC), BR ~ 10⁻⁶
- Forward-backward asymmetry in the µµ rest-frame A_{FB}(s) is sensitive probe of new physics [Ali *et al*]

 $\begin{array}{c} 0.4 \\ 0.2 \\$

 $A_{\rm FR}(s)$

LHCb: 4400 events/year, S/B > 0.4 $A_{FB}(\$)$ reconstructed using toy MC (two years data, background subtracted) Zero point located to ± 0.04 ATLAS: 2000 events, S/B = 7 (30 fb⁻¹)

B Physics at Future Hadron Facilities

Three factors to determine the luminosity:

SuperKEKB Machine Parameters

		bare lattice	with beam-beam	unit	
Beam current (LER/HER)		9.4	А		
Beam energy (LER/HER)	E	3.5	GeV		
Emittance	€ _x	24	128	nm	
Horizontal beta at IP	β _x *	20	2.3	cm	
Vertical beta at IP	β,*	3	2.4	mm	
Horizontal beam size	σ _x *	69	dynamical effects	μm	
Vertical beam size	σ,*	0.73	I.23	μm	
Beam size ratio	$r = \sigma_y^* / \sigma_x^*$	1.1	2.3	%	
Crossing angle (30 mrad crab crossing)	θχ		mrad		
Luminosity reduction	R _L	0.86	0.82		
ξ_x reduction	R _{ξx}	0.99	0.97		
ξ_y reduction	R _{ξy}	1.11	1.16		
Reduction ratio	$R_L/R_{\xi y}$	0.78	0.72		
Horizontal beam-beam (estimated with S-S simulation)	ξ _x	0.152	0.041		
Vertical beam-beam (estimated with S-S simulation)	ξ _y	0.215	0.187		
Luminosity	L	4.0 x	cm ⁻² s ⁻¹		

Higher Order Mode Loss (K. Shibata, Y. Suetsugu)

http://www-kekb.kek.jp/MAC/2005/Report/Shibata.pdf

Bellows - SuperKEKB

Bellows chamber with a comb-type RF shield

Features

- RF shield : nested comb teeth Length: 10 mm, Width: 1 mm Radial thickness: 10 mm,
- High thermal strength
- No radial step on the inner surface
- Loss Factor (estimated by MAFIA T3)

•
$$k(3 \text{ mm}) = 4.1 \times 10^9 [\text{V/C}]$$

• 1000
Total : $k(3 \text{ mm}) = 4.1 [\text{V/pC}]$
 $P_{\text{HOM}} = 707 [\text{kW}]$

k(3mm) reduces to ~40 %.

Coherent Synchrotron Radiation (T.Agoh)

http://www-kekb.kek.jp/MAC/2005/Report/Agoh.pdf

Crab crossing in the near future

positrons

head-on collision

crossing angle

RF deflector (crab cavity)

Kick

Kick

electrons

(Strong-weak simulation)

Head-on(crab)

(Strong-strong simulation)

crossing angle 22 mrad

•Superconducting crab cavities are under development, will be installed in KEKB in early 2006.

K. Hosoyama, et al

K. Ohmi & M. Tawada

Can we increase the stored current?

- Bunch current has been already limited by HOM and CSR.
- More bunches are necessary: more RF buckets: 1-1.5 GHz.
- Completely new RF system:
 - Discard all the existing 500 MHz system, which has been developed for 25 years since TRISTAN.
 - Develop klystrons, power supplies, cavities at a new frequency.
 - Superconducting cavity's HOM absorber will be more than difficult.
 - Feasibility of ARES at higher frequency is unknown.
 - 300 500 M\$, at least 15 FTE × 5 years. (Where are those people?)
 - In parallel with the operation of the existing system.
- Higher current needs different design of the vacuum system, which requires all magnets to be replaced for larger aperture.
- Is the shorter bunch spacing safe with parasitic collision?
- More electricity(150-200 MW!), additional power stations.
- Bad luminosity/cost.

ARES Cavity

- Passive stabilization with huge stored energy.
- Eliminates unnecessary modes by a coupling of 3 cavities.
- Higher order mode dampers and absorbers.
- No need for longitudinal bunch-by-bunch feedback.
- No transverse instability arises from the cavities.

Superconducting Cavity

- World's highest current, 1.3 A.
- Input coupler has been operated up to 380 kW.
- Ferrite HOM absorber working at 12 kW.

ARES upgrade for SuperKEKB

Larger detuning

⇒ Change energy ratio : Us/Ua = $9 \rightarrow 15$

Small modification on the window size of A-cav

-1 mode growth time :0.3 ms to 1.6 ms.

Then the -1 (and -2) modes related to the fundamental mode will be suppressed by a FB system in the RF control system.

(need bunch-by-bunch FB to suppress ARES HOM & $0/\pi$ mode instability)

Higher HOM power

Upgrade of HOM damper

Higher input RF power

400 kW/cavity -> 800 kW/cavity R&D of input coupler using new test-stand.

T. Kageyama

KEKB-MAC2005 SCC Upgrade Achievements of KEKB-SC

RF power absorbed by HOM dampers at 1.27 A

- A beam of 1.27 A in 1293 bunches induces the HOM of 14 16 kW for each module. (σ_z =7mm)
- The ratio of SBP / LBP is 7 kW / 9 kW.

HOM of D11 cavities

Summary

- Present design of SuperKEKB hits fundamental limits in the beam-beam effect and the bunch length (HOM & CSR).
- Higher current is the only way to increase the luminosity.
- Many technical and cost issues are expected with a new RF system.
- We need a completely different collider scheme.....

		Construction schedule of SuperKEKB RF system						Ver. 1.4 2004.12.22					
Fiscal Year		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
KEKB				KEKB operatio	n		KEKB sh	ut down					
SuperKEKB				New buildings		Supe	SuperKEKB construction		SuperKEKB commissioning				
									•		Ĭ		
Operating stations (cavities)	D1								2 (Crabs)	→	→	\rightarrow	→
	D2								2 (Crabs)	->	→	->	->
	D4	3 (6A)	→	→	→	→			10 (10AH)	→	→	\rightarrow	14 (14AH)
	D5	3 (6A)	->	4 (6A)	→	->			2 (2AH)	->	6 (2H+4L)	->	10 (2H+8L)
	D7	5 (10A)	→	\rightarrow	→	→			10 (10AL)	→	→	\rightarrow	\rightarrow
	D8	5 (10A)	->	→	→	->			10 (10AL)	→	→	->	->
	D10	4 (4S)	→	→	→	→			6 (6SH)	→	→	\rightarrow	→
	D11	4 (4S)	->	6 (4S+2C)	→	->			6 (6SH)	->	→	->	->
	DR							1(1A)	\rightarrow	\rightarrow	→	\rightarrow	→
Total number of operating stations		24	→	27	→	→			49	→	53	→	61
ARES-AC modify 1set			Design	Prototype	Beam Test								
ARES-AC modify 20 sets				nototype		Fab	ricate	Install					
ARES new full set				1st S-cav		S-cavity only			Eabr	icate	install 4		Install 5
Move ARES from D5 to D4							Move 4						
Install spare ARES							Install 1@DR						Install 3
4 additional SCC						Fab	ricate	Install					
Enlarge beam pipe for existing SCC								Beam pipe	c				
									č				
Crab RF system @Nikko		Cons	tuct										
Crab RF system @Tsukuba							Cons	tuct	ć				
RF system for Damping Ring						Con	stuct						
							Ť						
Klystron fabrication		1	3	4	4	5	4	4	3	3	3	3	
Power supply for 2 klystrons					3	3	3	2		1	2	2	
High-power and cooling system			2	1		8	8	8			2	4	4
Low-level RF system			2	1		8	8	8			2	4	4
Reinforce vapor cooling system					D4	D7	D8		D5				
R&Ds		R	&D of HOM d	lamper, Couple	r. Control. etc								