Highlights of Super-KEB Physics Lol

Toru lijima Nagoya University

April 20, 2005 2nd Super B Factory Workshop in Hawaii

In This Talk, ...

- Physics case with 5ab⁻¹ → 50 ab⁻¹ data at Super-B based on
- Letter of Intent for KEK Super B Factory (KEK Report 2004-4)
- Physics at Super B Factory (hep-ex/0406071)
 - cf) SLAC-R-709 The Discovery Potential of a Super B Factory Proceedings of the 2003 SLAC Workshops
- Contents; Super-B Motivation Super-B Physics Reach Studies of NP Scenario Summary

Success of B Factories

First precise test of KM picture for CPV.

sin $2\phi_1$ = +0.726 ± 0.037 is now a precise measurement (~5%).

Far Precise Test to Look for Correcti

- The other angles are being measured more seriously.
 - $\Box \phi_2$ from $S \rho \rho$ and $\rho \pi$ Dalitz
 - $2\phi_1 + \phi_3$ from $B \rightarrow D^{(*)}\pi$
 - $\Box \phi 3 \text{ from } B \rightarrow DK (w/ D \text{ Dalitz})$
 - + side measurements too.

 $|V_{cb}|, |V_{ub}|. \Delta m_d$

B Physics in LHC Era

Once NP found in B/LHC, the next question would be

What is the NP scenario?

Orthogonality of B physics to LHC

The squark/slepton mass matrix Sensitive to SUSY breaking mechanism.

B Physics in LHC Era

Once NP found in B/LHC, the next question would be

What is the NP scenario?

B and τ are in the 3rd generation ("hub" quark & lepton) probe for both $3 \rightarrow 2$, $3 \rightarrow 1$ transitions.

Cont'd

B & τ decays would be ideal probes for flavor structure of NP.

Super-B key measurements

- CPV in b→s
- FCNC (KII, Kvv etc.)
- LFV (τ decays)
- Higgs mediation ($B \rightarrow D\tau v$ etc.)
- CKM
- + their correlation

+ Synergy to LHC and other flavor physics exp's.

Super Belle

Super Belle

Feature of Super-Belle Exp.

Physics Reach at Super-KEKB

Physics at Super B Factory (hep-ex/0406071)

Measurement of ϕ_2 and ϕ_3

ϕ_2 measurement

- $B \rightarrow \pi \pi$ (isospin analysis)
 - $\Delta \phi_2 = 3.9/1.2 \text{ deg.} (5/50 \text{ ab}^{-1})$
- $B \rightarrow \rho \pi$ (Dalitz plot analysis) $\Delta \phi_2 = 2.9/0.9 \text{ deg.} (5/50 \text{ ab}^{-1})$

Inclusive $b \rightarrow u \mid v$ with fully reconstructed tag_{ub|/Vub|} Total Error

- Mx, q², P₊
 - Good determination of m_b by
 b→c I v / b→sγ is essential.

 $\delta m_b \sim 70$ MeV presently

- Exclusive $B \rightarrow \pi I v$ with full recon or D* I v tagging.
 - High quality data in high q²
 - Form factor by unquenched lattice

~5% determination is possible.

 $D \rightarrow \pi I v @ CLEO-c$

CKM at Super-B 50 ab⁻¹

CKM is only one part of Super-B physics programs, but still provides model indep. approach to constrain NP.

14

New CPV Phases in $b \rightarrow s \overline{q} q$

Cont'd

5 σ confidence region for A and S (5ab⁻¹/50ab⁻¹)

Sanda @ CKM2005. The reason why present B is so successful. "Luminosity requirement was set so that we can find CPV even if $sin2\phi_1 \sim 0.10$, but it is turned out to be large (~0.72)"

Theoretical limitation The region to cover Luminosity goal

$B \rightarrow X_{s\gamma} CP Asymmetry$

- Sensitive NP.
- Theoretically clean.
- Standard Model "~Zero".
 - Helicity flip of γ suppressed by ~m_s/m_b

Present result $S = -0.79 \stackrel{+0.63}{_{-0.50}} \pm 0.09$ (Belle) $S = +0.25 \pm 0.63 \pm 0.14$ (BaBar)

	Present Belle (stat./syst.)	5ab-1	50ab-1
$A_{cp}^{mix}(B \rightarrow K^*\gamma, K^* \rightarrow Ks\pi^0)$	0.56 / 0.09	0.14	0.04
$A_{cp}^{dir}(B \rightarrow X s \gamma)$	0.051 / 0.038	0.011	0.005

$B \rightarrow X_s II FB Asymmetry$

- Good electroweak probe for b→s loop.
- q² distribution has different pattern depending on sign(C₇).

$$A_{FB} \propto \Re \left[C_{10}^* \left(s C_9^{eff} \left(s \right) + r(s) C_7 \right) \right]$$

$B \rightarrow X_s II FB Asymmetry$

19

Lepton Flavor Violation

τ**→Ι**γ/**3Ι,Ι**η

$$\tau \rightarrow \gamma$$
SUSY + Seasaw
Large LFV $Br(\tau \rightarrow \mu\gamma) = O(10^{-7 \sim 9})$
 $Br(\tau \rightarrow \mu\gamma) \square 10^{-6} \times \left(\frac{(m_{\tilde{L}}^2)_{32}}{\overline{m}_{\tilde{L}}^2}\right) \left(\frac{1 TeV}{m_{SUSY}}\right)^4 \tan^2 \beta$

τ**→3Ι,Ι**η

= 5:1:0.5

- Neutral Higgs mediated decay.
- Important when Msusy >> EW scale. $Br(\tau \to 3\mu) =$ $4 \times 10^{-7} \times \left(\frac{\left(m_{\tilde{L}}^{2}\right)_{32}}{\bar{m}_{\tilde{L}}^{2}}\right) \left(\frac{\tan\beta}{60}\right)^{6} \left(\frac{100GeV}{m_{A}}\right)^{4}$ $Br(\tau \to \mu\eta) : Br(\tau \to 3\mu) : Br(\tau \to \mu\gamma)$

Search for Charged Higgs

2

 $|MM|^2 [(GeV/c^2)^2]$

0

6

8 0

2

 $|MM|^2 [(GeV/c^2)^2]$

Mode	Nsig	Nbkg	dB/B
$D^0 au^+ (\ell^+ \overline{ u}_ au u_\ell) u_ au$	280	550	7.9%
$D^0 au^{\scriptscriptstyle +}(h^{\scriptscriptstyle +}\overline{ u}_{ au}) u_{ au}$	620	3600	

Sensitivity for Charged Higgs

Elucidation of NP Scenario

I T. Goto, Y.Okada, Y.Shimizu, T.Shindou, M.Tanaka, hep-ph/0306093, also in SuperKEKB Lol

Can we distinguish these 4 senarios at Super-KEKB?

$A_{cp}(B \rightarrow \phi Ks)$ vs SUSY Models

If confirmed with the central value unchanged. Large impact on LHC physics and cosmology if new CPV in b→s: <u>Eg. mSUGRA, Gauge mediated SUSY breaking</u>

$A_{cp}(B \rightarrow X_{s\gamma})$ vs SUSY models

26

CPV in b→s and SUSY Scenario

Different SUSY breaking scenario can be distinguished in A_{cp}^{mix}(φKs) - A_{cp}^{mix}(K*⁰γ) correlation.

Correlation of other ovservables are also useful. $A_{cp}^{dir}(X_s\gamma), A_{FB}(X_sII), Br(\tau \rightarrow \mu\gamma), CKM$

Summary

Super-B is an unique facility to provide O(10¹⁰) B and τ in clean environment (5 \rightarrow 50ab⁻¹)

The Mission Far Precise Test to Look for Correction by NP. Search for New Origin of Flavor Mixing & CP Violation Elucidation of New Physics Scenario

Summary

Super-B is an unique facility to provide O(10¹⁰) B and τ in clean environment (5 \rightarrow 50ab⁻¹)

> Theoretical limitation ? Detector feasibility

The Mission Far Precise Test to Look for Correction by NP. Search for New Origin of Flavor Mixing & CP Violation Elucidation of New Physics Scenario

Synergy to LHC (need more studies)

Backup Slides

KEKB Upgrade Scenario

Pattern of Deviation from SM

	Unitarity triangle			F	Rare decay Y.Okada	
	Bd- unitarity	3	∆ m(Bs)	B->∳Ks	B->Msγ indirect CP	b->sγ direct CP
mSUGRA	-	-	-	-	-	+
SU(5)SUSY GUT + vR (degenerate)	-	+	+	-	+	-
SU(5)SUSY GUT + vR (non-degenerate)	-	-	+	++	++	+
U(2) Flavor symmetry	+	+	+	++	++	++

++: Large, +: sizable, -: small

UT vs SUSY models

CP Asymmetries in **B** $\rightarrow \phi$ Ks and b $\rightarrow sy$

SUSY vs. Warped Extra Dimensions

Agashe, Perez, Soni, hep-ph/0406101(PRL); hep-ph/0408134

Search for New Hadrons

