Experimental precision of $sin 2\beta$ ($sin 2\phi_1$) measurements

Owen Long U. C. Riverside

Super B factory workshop University of Hawaii April 2005

What limits the precision of sin2β measurements?

What limits the precision of sin2β measurements?

luminosity "It's the economy, stupid!"

James Carville

sin2 β from charmonium modes

• Extrapolation uncertainty: asymptotic systematic error could by off by a factor of two either way (x0.5 or x2.0).

$sin2\beta_{eff}$ in b \rightarrow s penguin modes

- Uncertainty on CP of $K^+K^-K_s$ included in statistical error.
- More difficult than charmonium to extrapolate systematic errors (next slide...)

Limiting issues (?) for b→s penguin modes

- $\eta' K^0_S$: Nothing special for this mode? Ultimate systematic error close to J/ $_{\rm V}$ K_s ?
- $K_S^0 K_S^0 K_S^0$: CP vertex measurement may suffer if machine backgrounds cause excessive occupancy in inner silicon? Efficiency will depend on design of detector...
- $\frac{\phi K_S^0}{M_S}$ and $\frac{K^+ K^- K_S^0}{K_S}$: Dominant systematics are from uncertain CP content (S-wave contamination and average CP).
 - With super-B statistics, will do a time-dependent Dalitz analysis of the K⁺K⁻K_s system (e.g. ρπ). Systematic errors could reach 0.02 level?

Systematics common to all measurements

- Beamspot location (δS~0.01): Current techniques use constraint from (local) average beam position in Δt reconstruction.
 - *Essential* for $K_s K_s K_s$ (theoretically pristine(?) mode) and single-track tag vertex events.
 - Unclear if this will improve in B → super B. May even get worse...

• Silicon alignment and Δt resolution model ($\delta S \sim 0.01$):

- Unlikely to improve much over today's values
 - Randomness in tag vertex (long lived daughters) → model dependence.
- Si alignment depends on detector (and beam?) stability.

Another common systematic – Tag-side interference

• From $b \rightarrow c$ vs $b \rightarrow u$ interference on the tag side.

- Small for sin2 β (S) due to fortunately small coefficient (δ S<<0.01). $S_{\text{fit}} \approx S_0 \left[1 - 2r' \cos \delta' \left\{ \cos 2\beta \cos(2\beta + \gamma) + \mathcal{K} \sin 2\beta \sin(2\beta + \gamma) \right\} \right]$ $S_{\text{fit}} \approx S_0 \left[1 - 2r' \cos \delta' \times (\approx -0.01) \right]$
- Not so small for direct *CP* term (δA or $\delta C \sim 0.02$ to 0.03). $C_{fit} \approx 2 r' \sin \gamma \sin \delta'$ $C_{fit} \approx 2 r' \sin \delta' \times (\approx 0.87)$ Owen Long, U.C. Riverside

Constraining tag-side interference

- Constrain the tag-side parameters with $D^* l v$
 - CP violation can *only* come from tag-side effect.
 - Belle sin($2\beta + \gamma$) analysis already uses $D^* l \nu$ (PRL 93, 031802 (2004))
- Example of what could be done using D*I v constraint assuming measurements indicate r'=0.

• Improvement of at least x3. Will probably go below $\delta C \sim 0.01$.

Summary

- sin2 β from charmonium will reach around $\sigma(\sin 2\beta) \approx 0.015$
 - Luminosity is *not* the limiting factor. Make life simple and work with the best events: $J/\psi K_s$ and lepton tags.
- Control / understanding of beam position should be kept in mind
 - Some modes could manage without beam constraint, for others it's essential
 - We don't want this to get significantly worse than current standards (~0.01)
- **b→s penguin modes** likely *will* be limited by statistics
 - Current major systematics should scale with statistics
 - Will the KsKsKs mode suffer significantly in the new environment? Let's hope not.
- **Tag-side interference** is an issue for the direct CP coefficient
 - Systematic can be significantly reduced by using constraints from D^*I_{ν} .