2nd Super-B Factory Workshop April 20-22, 2005 Hawaii

The expected LHCb Physics Performance

R. Le Gac on behalf of the LHCb Collaboration

CPPM, Marseille

Monte-Carlo

- Detailed simulation of the detector:
 - Event generation with PYTHIA 6.2 tuned to $\sqrt{s} = 14 \,\mathrm{TeV}$;
 - Tracking of the particle though the detector with GEANT;
 - Simulation of the detector response including spillover and pile-up;
 - Simulation of the trigger decision.
- Object oriented software processes 0 simulated events as real data:
 - Track finding;
 - Particle identification;
 - Selection of B-meson final states.

- Data samples end '03:
 - **GEANT 3**
 - → 32×10⁶ minimum bias;
 - \rightarrow 11×10⁶ inclusive b b events
 - Many specific signal B decays: 50k to 200k per decay channel.
- Data samples end '04:
 - GEANT 4;
 - → 110×10⁶ minimum bias;
 - \rightarrow 61×10⁶ inclusive b b events;
 - Many specific signal B decays.

All results quoted in this talk are based on 2003 samples

b hadrons production at LHC

 All b hadrons species are produced in proton-proton collisions at 14 TeV:

 $B_{d'} B_{s'} B_{c'} B^{\pm}, \Lambda_{b'} \dots$ $27 \times 10^{3} B_{d} \text{ per second}$ $7 \times 10^{3} B_{s} \text{ per second}$

in the LHCb acceptance;

- B/S ~ 160.
- The huge statistics of B_s meson opens new approaches to study the CP symmetry in the beauty sector.

B_s system

Mass and lifetime:

 $m_{\rm B_s} = 5369.6 \pm 2.4 \,{\rm MeV}$ $\tau_{\rm s} = 1.461 \pm 0.057 \,{\rm ps}$

Most of observables are not yet measured:

		SM Expectation
Oscillation frequency	$\Delta m_{_{ m s}}$	~ 20ps ⁻¹
Weak mixing phase	Φ _s	<i>−</i> 2λ²η ~ <i>−</i> 0.04
Relative decay width difference	$\Delta \Gamma_{s} / \Gamma_{s}$	~ 0.1

Time dependent decay rate asymmetries:

$$A_{f}^{CP}(t) = \frac{R_{\overline{B}_{s} \to f}(t) - R_{\overline{B}_{s} \to f}(t)}{R_{\overline{B}_{s} \to f}(t) + R_{\overline{B}_{s} \to f}(t)} = \frac{A_{f}^{\text{dir}} \cos(\Delta m_{s} t) + A_{f}^{\text{mix}} \sin(\Delta m_{s} t)}{\cosh(\frac{\Delta \Gamma_{s}}{2} t) - A_{f}^{\Delta} \sinh(\frac{\Delta \Gamma_{s}}{2} t)}$$

where:
$$\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f}$$
 $A_f^{\text{dir}} = -\frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}$ $A_f^{\text{mix}} = \frac{2 \operatorname{Im}(\lambda_f)}{1+|\lambda_f|^2}$ $A_f^{\Delta} = \frac{2 \operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2}$

Time dependent asymmetry at LHCb

- The proper time of the signal B decay is measured via:
 - the position of the primary and secondary vertexes;
 - ✤ the momentum of the signal B state from its decay products.

Event selection: $B_s \rightarrow D_s^{\pm} K^{\mp} \rightarrow (K^+ K^- \pi^{\pm}) K^{\mp}$ (1)

T1 T2 T3

Event selection: $B_s \rightarrow D_s^{\pm} K^{\mp} \rightarrow (K^+ K^- \pi^{\pm}) K^{\mp}$ (2)

1) Primary vertex.

- D_s meson by using identified kaon and pion and a vertex constrained to the D_s mass.
- B_s meson by combining a D_s with a kaon forming a vertex (no mass constraint).
- 4) Select B_s with an impact parameter ~0 and an invariant mass in the window $m_{\rm B_s} \pm 50 \,{\rm MeV}/c^2$

Summary of the cuts.

Selection requirements	$B^0_s \rightarrow D^s h^+$
All products p	2 GeV/c
$D_s \text{ product } p_t$	300 MeV/c
$\mathrm{D_s} \mathrm{ \ product} \sum p_t$	2200 MeV/c
bachelor K/ $\overline{\pi} p_t$	700 MeV/c
pions: $\Delta \mathcal{L}_{\pi \mathrm{K}}$	>-5
kaons: $\Delta \mathcal{L}_{K\pi}$	>-5
χ^2/NDF	< 4
Constrained D_s vertex χ^2	<10
D_s mass window	$15 \text{ MeV}/c^2$
$S_{ m IP}({ m D_s~prod})$	>1
$S_{ m IP}(m D_s)$	>2
$S_z(D_s, PV)$	>4.5
Unconstrained B_s vertex χ^2	<3
$S_{ m IP}(h){ m m}$	>4
$S_{ m IP}(m B_s)$	<3
$\cos(heta)$	0.99997
$z_{ m B_s}-z_{ m D_s}$	$>0~\mu{ m m}$
B_s mass window (B-inclusive)	$\pm 50 (500) \text{ MeV/}c^2$
specific $B^0_s \rightarrow D^{\pm}_s K^{\mp}$ sele	ction criteria
bachelor K: $\Delta \mathcal{L}_{K\pi}$	>2
bachelor K: $\Delta \mathcal{L}_{Ke}$	>2

Resolution: $B_s \rightarrow D_s^{\pm} K^{\mp} \rightarrow (K^+ K^- \pi^{\pm}) K^{\mp}$

Flavour Tagging

- Several algorithm to determine the flavour of the signal B meson at production:
 - Opposite side:
 - e, μ from semileptonic b decays;
 - K[±] from b decays chain;
 - Inclusive vertex charge.
 - Same side:
 - K^{\pm} from fragmentation accompanying B_s meson.

Performance of Flavour Tagging

After passing trigger and offline cuts

Channel	$\varepsilon_{\mathrm{tag}}$ (%)	w~(%)	$\varepsilon_{\mathrm{eff}}$ (%)
$B^0 \rightarrow \pi^+ \pi^-$	41.8 ± 0.7	$34.9{\pm}1.1$	$3.8 {\pm} 0.5$
${ m B^0}\! ightarrow{ m K^+}\pi^-$	43.2 ± 1.4	33.3 ± 2.1	4.8 ± 1.0
${ m B^0}\! ightarrow{ m J}\psi(\mu\mu){ m K_S^0}$	45.1 ± 1.3	$36.7{\pm}1.9$	3.2 ± 0.8
$\mathrm{B}^{0} \rightarrow \mathrm{J} \psi \left(\mu \mu ight) \mathrm{K}^{*0}$	$41.9 {\pm} 0.5$	$34.3 {\pm} 0.7$	4.1 ± 0.3
$B_s^0 \rightarrow K^+K^-$	$49.8 {\pm} 0.5$	$33.0{\pm}0.8$	5.8 ± 0.5
${ m B_s^0} ightarrow \pi^+ { m K^-}$	49.5 ± 1.8	$30.4{\pm}2.6$	7.6 ± 1.7
$B_s^0 \rightarrow D_s^- \pi^+$	54.6 ± 1.2	$30.0{\pm}1.6$	8.7 ± 1.2
${ m B}^0_{ m s} ightarrow { m D}^{\mp}_{ m s} { m K}^{\pm}$	54.2 ± 0.6	$33.4 {\pm} 0.8$	6.0 ± 0.5
$\mathrm{B^0_s} \rightarrow \mathrm{J}\psi (\mu\mu)\phi$	50.4 ± 0.3	$33.4 {\pm} 0.4$	5.5 ± 0.3

where:

$$\begin{vmatrix} \varepsilon_{\text{tag}} = \frac{R+W}{R+W+U} \\ \omega = \frac{W}{R+W} \\ \varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} (1-2\omega)^2 \end{vmatrix}$$

Breakdown for ${\tt B}_{{\tt d},{\tt s}}$ \rightarrow ${\tt h}^{{\scriptscriptstyle +}}{\tt h}^{{\scriptscriptstyle -}}$

Tag	$\varepsilon_{ ext{tag}}$ (%)	w~(%)	$\varepsilon_{\mathrm{eff}}$ (%)
μ	$11.1 {\pm} 0.3$	35.3 ± 1.1	$1.0{\pm}0.2$
e	5.2 ± 0.2	35.6 ± 1.7	$0.4{\pm}0.1$
K _{opp}	$16.6{\pm}0.3$	$31.2 {\pm} 0.9$	$2.4{\pm}0.2$
$Q_{ m vtx}$	$24.3 {\pm} 0.6$	$39.9{\pm}0.8$	$1.0{\pm}0.2$
Combined (B^0)	$40.9 {\pm} 0.4$	$34.6 {\pm} 0.7$	$3.9{\pm}0.3$
K _{same}	17.5 ± 0.4	32.8 ± 1.2	2.1 ± 0.3
Combined (B_s^0)	$49.8 {\pm} 0.5$	$32.8 {\pm} 0.8$	5.9 ± 0.5

- Effective tagging efficiencies vary between 3 and 9% depending on the final state.
- → In real physics analysis, the wrong tag fraction will be measured using control channels with similar topology, e.g. $B_d \rightarrow J/\psi K^{*0}$ for $B_d \rightarrow J/\psi K_s$

Estimation of Background

- Sources of background:
 - Exclusive B-decays mimicking the signal decay;
 - Combinatorial background in bb inclusive events.
- Difficult to estimate the combinatorial contribution since the available statistics of bb events is limited.

Method:

- Open the $B_{d,s}$ mass window $(\pm 500 \, \text{MeV}/c^2)$
- Scale down the obtained number to the tight mass window (±50 MeV/c²) using linear extrapolation.

Event type	$B^0_s ightarrow K^+ K^-$
$B^0 \to \pi^+\pi^-$	45
$B_s^0 \rightarrow K^+ K^-$	36505
$B^0 \to K^+ \pi^-$	904
$B^0_s ightarrow K^- \pi^+$	160
$\Lambda_b \to p\pi^-$	0
$\Lambda_b \to pK^-$	182

$$\begin{cases} B_{\text{Exclusive}}/S = 0.04 \\ B_{\text{Comb.}}/S < 0.51 \end{cases}$$

Evaluation of Sensitivity

 Sensitivities to CP violating observables are determined with a toy Monte-Carlo.

Inputs come from the full simulation:

- Number of signals/background events after trigger, off-line selection and tagging;
- Wrong tag fraction;
- Acceptances as a function of proper time;
- Resolutions.
- Many sets of events are generated.

For each of them, decay rates are fitted with an unbinned likelihood where

Re (λ_f) , Im (λ_f) , $\Delta m_{d,s}$, $\Delta \Gamma_{d,s}$, $\Gamma_{d,s}$, ω_f are free parameters. The fit also takes into account backgrounds and resolution.

Branching Ratio

 Performances were evaluated through few benchmark channels.

	Visible Branching ratio
$B_d \rightarrow J/\psi(\mu^+\mu^-)K_s(\pi^+\pi^-)$	1.98×10^{-5}
$B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$	1.2×10 ⁻⁴
$B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	3.1×10 ⁻⁵
$B_d \rightarrow \pi^+ \pi^-$	4.8×10 ⁻⁶
$B_s \rightarrow K^+ K^-$	1.85×10^{-5}
$B_s \rightarrow D_s^{\pm}(K^{\pm}K^{-}\pi^{+})K^{\mp}$	1.0×10^{-5}
$B_d \rightarrow \overline{D}^0(K^+\pi^-)K^{*0}(K^+\pi^-)$	1.2×10 ⁻⁶
$B_d \rightarrow D_{CP}^0(K^+K^-)K^{*0}(K^+\pi^-)$	1.9×10^{-7}
$B_d \rightarrow \rho \pi$	2×10 ⁻⁵

The phase $\beta(\Phi_1)$...

The phase
$$\beta$$
 in $B_d \rightarrow J/\psi(\mu^+\mu^-)K_s(\pi^+\pi^-)$

Decay is dominated by a tree amplitude

$$A_{CP}(t) = -\left(1 - 2\omega\right) \left\{ \frac{(1 - |\lambda|^2)}{(1 + |\lambda|^2)} \cos\left(\Delta mt\right) - \frac{2\operatorname{Im}(\lambda)}{(1 + |\lambda|^2)} \sin\left(\Delta mt\right) \right\}$$

where $Im(\lambda) = sin 2\beta$

- The wrong tag fraction ω is determined with the self-tagging mode $B_d \rightarrow J/\psi K^{*0}$
- Sensitivity for 2 fb⁻¹:

N _{tagged}	91×10 ³
B/S	0.69±0.11
$\sigma_{stat}(sin 2\beta)$	0.02

The B_s system...

- $\bullet \Delta m_{\rm s}$ in ${\rm B_s} \to {\rm D_s}^- \pi^+$
- $\Delta \Gamma_{\rm s}$ and $\phi_{\rm s}$ in ${\rm B_s} \rightarrow {\rm J}/\psi \phi$

Oscillation frequency Δm_s in $B_s \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$

Flavour-specific B decay:

$$A_{\Delta m_{\rm s}}(t) = -(1-2\omega) \frac{\cos(\Delta m_{\rm s}t)}{\cosh(\Delta \Gamma_{\rm s}t)}$$

• Sensitivity for 2 fb⁻¹:

N _{tagged}	43×10 ³	
B/S	0.3±0.1	
$\sigma_{stat}(\Delta m_{s})$	0.011	

- Highest Δm_s measurable = 68 ps⁻¹ (statistical significance of at least 5 σ)

The phase Φ_s and $\Delta\Gamma_s$ in $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

• Counterpart of $B_d \rightarrow J/\psi K_s$ Mixture of different CP eigenstates:

$$A_{CP}(t) = -(1-2\omega) \frac{1-R_t}{e^{\frac{-\Delta\Gamma_s}{2}t} + R_t e^{\frac{-\Delta\Gamma_s}{2}t}} \sin(\Delta m_s t) \phi_s$$

- Δm_s and the wrong tag fraction ω are determined in $B_s \rightarrow D_s \pi$ events.
- Sensitivity for 2 fb⁻¹:

N _{tagged}	50×10 ³	
B/S	<0.3	(90% CL)
$\sigma_{stat}(\Phi_{s})$	0.064	
$\sigma_{stat}(\Delta\Gamma_{s}/\Gamma_{s})$	0.018	

$\Delta m_{ m s}~{ m in}~{ m ps}^{-1}$	15	20	25	30
$\sigma({oldsymbol{\phi}}_{ m s})$	0.057	0.064	0.075	0.088
$\sigma(\Delta\Gamma/\bar{\Gamma})$	0.018	0.018	0.018	0.018
$\Delta\Gamma/\Gamma$	0	0.1	0.2	
$\sigma(oldsymbol{\phi}_{ m s})$	0.059	0.064	0.070	
$\sigma(\Delta\Gamma/ar{\Gamma})$	0.015	0.018	0.019	
$\phi_{ m s}$	0	0.04	0.1	0.2
$rac{\phi_{ m s}}{\sigma(\phi_{ m s})}$	0 0.064	0.04 0.064	0.1 0.064	0.2
$rac{\phi_{ m s}}{\sigma(\phi_{ m s})} \ \sigma(\Delta\Gamma/ar{\Gamma})$	0 0.064 0.018	0.04 0.064 0.018	$ \begin{array}{r} 0.1 \\ 0.064 \\ 0.018 \end{array} $	$\begin{array}{c} 0.2 \\ 0.066 \\ 0.018 \end{array}$
$rac{\phi_{ m s}}{\sigma(\phi_{ m s})} \ \sigma(\Delta\Gamma/ar{\Gamma})$	0 0.064 0.018	0.04 0.064 0.018	0.1 0.064 0.018	0.2 0.066 0.018
$egin{array}{c} \phi_{ m s} \ \sigma(\phi_{ m s}) \ \sigma(\Delta\Gamma/ar{\Gamma}) \end{array} \ R_t \end{array}$	0 0.064 0.018 0.1	0.04 0.064 0.018 0.2	0.1 0.064 0.018 0.3	0.2 0.066 0.018
$egin{array}{c} \phi_{ m s} & \ \sigma(\phi_{ m s}) \ \sigma(\Delta\Gamma/ar{\Gamma}) & \ \hline R_t \ \sigma(\phi_{ m s}) & \ \end{array}$	0 0.064 0.018 0.1 0.050	0.04 0.064 0.018 0.2 0.064	0.1 0.064 0.018 0.3 0.084	$\begin{array}{c} 0.2 \\ 0.066 \\ 0.018 \end{array}$
$egin{array}{c} \phi_{ m s} & \ \sigma(\phi_{ m s}) & \ \sigma(\Delta\Gamma/ar{\Gamma}) & \ \hline R_t & \ \sigma(\phi_{ m s}) & \ \sigma(\Delta\Gamma/ar{\Gamma}) & \ \end{array}$	$\begin{array}{c} 0 \\ 0.064 \\ 0.018 \\ \hline 0.1 \\ 0.050 \\ 0.015 \end{array}$	0.04 0.064 0.018 0.2 0.064 0.018	$\begin{array}{c} 0.1 \\ 0.064 \\ 0.018 \\ \hline 0.3 \\ 0.084 \\ 0.019 \end{array}$	0.2 0.066 0.018

The phase $\gamma(\Phi_3)$...

•
$$B_s \rightarrow K^+ K^-$$
 and $B_d \rightarrow \pi^+ \pi^-$
• $B_s \rightarrow D_s^{\pm} K^{\mp}$
• $B_d \rightarrow \overline{D}^0 K^{*0}$, $D^0 K^{*0}$
• ...

The phase γ in $B_s \rightarrow K^+ K^-$ and $B_d \rightarrow \pi^+ \pi^-$ (1)

Tree and penguins amplitudes:

• By exchanging all $d(\overline{d})$ in $s(\overline{s})$ the $B_d \rightarrow \pi^+ \pi^-$ becomes $B_s \rightarrow K^+ K^-$

$$\begin{vmatrix} A_{\pi\pi}^{dir} = f^{dir}(d, \vartheta, \gamma) & \qquad A_{KK}^{dir} = f^{dir}(d', \vartheta', \gamma) \\ A_{\pi\pi}^{mix} = f^{mix}(d, \vartheta, \gamma, \beta) & \qquad A_{KK}^{mix} = f^{mix}(d', \vartheta', \gamma, \phi_s) \\ de^{i\vartheta} = \frac{penguins}{tree} \Big|_{B_d \to \pi\pi} & \qquad d'e^{i\vartheta'} = \frac{penguins}{tree} \Big|_{B_d \to KK}$$

• SU(3) symmetry d = d' and $\theta = \theta'$ if β and ϕ_s are known, four observables to determine d, θ and γ The phase γ in $B_s \rightarrow K^+K^-$ and $B_d \rightarrow \pi^+\pi^-$ (2)

- The wrong tag fraction $\omega_{d} (\omega_{s})$ are determined $B_{d} \rightarrow K^{+} \pi^{-} (B_{s} \rightarrow \pi^{+} K^{-})$
- The phase β (Φ_s) comes from $B_d \rightarrow J/\psi K_s (B_s \rightarrow J/\psi \phi)$ decays.

• Sensitivity for 2 fb⁻¹:

$N_{tagged}(\pi\pi)$	11×10 ³	
B/S	<0.7	(90% CL)
$N_{tagged}(KK)$	18×10 ³	
B/S	0.3±0.1	
$\sigma_{stat}(\gamma)$	4.9°	

$\sigma(\gamma)$ 5.2° 4.9° 4.5°	
$\Delta m_s \ [ps^{-1}]$ 15 (20) 25 30	
$\sigma(\gamma)$ 4.0° 4.9° 5.9° 8.5°	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\sigma(\gamma)$ 1.8° 2.7° 4.9° 9.0°	
$ec{artheta}$ $ec{artheta}$ $ec{120^o}$ $ec{140^o}$ $ec{(160^o)}$ $ec{180^o}$ $ec{200^o}$	
$\sigma(\gamma)$ 3.8° 3.8° 4.9° 6.7° 5.2°	
γ 55° (65°) 75° 85° 95°	105^{o}
$\sigma(\gamma) = 5.8^{\circ} = 4.9^{\circ} = 4.3^{\circ} = 4.7^{\circ} = 4.7^{\circ}$	4.7°
$\phi_s [\mathrm{rad}] = 0 (-0.04) -0.1 -0.2$	
$\sigma(\gamma)$ 4.9° 4.9° 5.4°	

The phase γ in $B_s \rightarrow D_s^{\pm}(K^+K^-\pi^{\pm})K^{\mp}$

- Two trees diagrams contribute to the decay.
- From four decays rate:

$$\begin{cases} \gamma + \phi_{s} = \frac{1}{2} \{ arg(\lambda) - arg(\overline{\lambda}) \} \\ \Delta_{T_{1}/T_{2}} = \frac{1}{2} \{ arg(\lambda) + arg(\overline{\lambda}) \} \end{cases}$$

- Δm_s and the wrong tag fraction ω come from the $B_s \rightarrow D_s \pi$ decay.
- Sensitivity for 2 fb⁻¹:

N _{tagged}	2.9 ×10 ³		
B/S	<1	(90% CL)	
$\sigma_{stat}(Y+\Phi_{s})$	14.2°		

Δm_s	15	20	25	30		
$\sigma(\gamma + \phi_s)$	12.1	14.2	16.2	18.3		
$\Delta \Gamma_s / \Gamma_s$	0	0.1	0.2			
$\sigma(\gamma + \phi_s)$	14.7	14.2	12.9			
$\gamma + \phi_s$	55	65	75	85	95	105
					50	100
$\sigma(\gamma + \phi_s)$	14.5	14.2	15.0	15.0	15.1	$100 \\ 15.2$
$\sigma(\gamma + \phi_s)$	14.5	14.2	15.0	15.0	15.1	15.2
$\sigma(\gamma + \phi_s)$ $\Delta_{T1/T2}$	14.5 -20	14.2 -10	15.0 0	15.0 +10	15.1 +20	15.2

The phase γ in $B_d \rightarrow \overline{D}^0 K^{*0}$, $D^0 K^{*0}$

- Method from Gronau-Wyler adapted to D⁰K^{*0} by Dunietz.
- Measurement of six decay rates:

 $\begin{array}{lll} B_d & \rightarrow & D^0(K^-\pi^+) & K^{*0}(K^+\pi^-) \\ B_d & \rightarrow & \overline{D}^0(K^+\pi^-) & K^{*0}(K^+\pi^-) \\ B_d & \rightarrow & D^0_{CP}(K^+K^-) & K^{*0}(K^+\pi^-) \\ \overline{B}_d & \rightarrow & D^0(K^-\pi^+) & \overline{K}^{*0}(K^-\pi^+) \\ \overline{B}_d & \rightarrow & \overline{D}^0(K^+\pi^-) & \overline{K}^{*0}(K^-\pi^+) \\ \overline{B}_d & \rightarrow & D^0_{CP}(K^+K^-) & \overline{K}^{*0}(K^-\pi^+) \end{array}$

 $\frac{4}{8} \xrightarrow{2\gamma} \sqrt{2} A(\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0}) \xrightarrow{4} (\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0}) \xrightarrow{7} \sqrt{2} A(\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0}) \xrightarrow{2\gamma} A(\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0}) \xrightarrow{7} A(\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0}) \xrightarrow{7} A(\overline{B}_{d} \rightarrow \overline{D}_{1}^{0} \overline{K}^{*0})$

Sensitivity for 2 fb⁻¹:

 $\sigma_{stat}(Y)$

	Yield	B/S
$B_d \rightarrow \overline{D}^0 K^{*0} + c.c.$	3.4×10^{3}	0.3
$B_d \rightarrow D^0 K^{*0} + c.c.$	0.49×10^{3}	1.8
$B_d \rightarrow D_{CP}^0 K^{*0} + c.c.$	0.59×10^{3}	1.4

8.2°

 55° 65° 75° 85° 95° 105° γ 8.2° $\sigma(\gamma)$ 9.0° 7.6° 7.1° 7.0° 7.0° 3% 0.5%0% 0% 0% Fail 0%

The sum $(\beta + \gamma)$...

The sum (β + γ) in $B_d \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$

 Analysis of time dependent, tagged, Dalitz plot distributions:

 $\begin{cases} \mathbf{B}_{\mathrm{d}} \rightarrow \omega \, M_{\mathbf{B}_{\mathrm{d}}}^{3\pi}(m^{2}(\pi^{+}\pi^{0}), m^{2}(\pi^{-}\pi^{0}), t, \vec{\alpha}) \\ \overline{\mathbf{B}}_{\mathrm{d}} \rightarrow \omega \, M_{\overline{\mathbf{B}}_{\mathrm{d}}}^{3\pi}(m^{2}(\pi^{+}\pi^{0}), m^{2}(\pi^{-}\pi^{0}), t, \vec{\alpha}) \end{cases}$

where

$$\vec{\alpha} = (\beta + \gamma, T^{^{-+}}, \phi^{^{-+}}, T^{^{00}}, \phi^{^{00}}, P^{^{-+}}, \delta^{^{-+}}, P^{^{+-}}, \delta^{^{+-}})$$

• Sensitivity for 2 fb⁻¹:

N _{evts}	14×10	3
B/S	<3	(90% CL)
$\sigma_{stat}(\beta+\gamma)$	8°	

Penguin and box decays...

Radiative penguin decays:

$$B_{d} \rightarrow K^{*0} \gamma$$
$$B_{s} \rightarrow \phi \gamma$$
$$B_{d} \rightarrow \omega \gamma$$

Electroweak penguin decay:

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$

Gluonic penguin decays:

$$B_{s} \rightarrow \phi \phi$$
$$B_{d} \rightarrow \phi K_{s}$$

Rare box diagram decay:

 $B_s \rightarrow \mu^+ \mu^-$

Events yield

• For 2 fb^{-1,} after trigger and offline selection:

Channel	B.R.	Yield	B/S (90%CL)
$B_d \rightarrow K^{*0}(K^+\pi^-)\gamma$	2.9×10^{-5}	3.5×10^{4}	< 0.7
$B_s \rightarrow \phi(K^+K^-)\gamma$	2.1×10^{-5}	9.3×10^{3}	<2.4
$B_d \rightarrow \omega(\pi^+\pi^-\pi^0)\gamma$		40	<3.5
$\mathbf{B}_{\mathrm{d}} \rightarrow \mathbf{K}^{*0} (\mathbf{K}^{+} \boldsymbol{\pi}^{-}) \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$	8×10^{-7}	4.4×10^{3}	<2.0
$B_d \rightarrow \phi(K^+K^-)K_S(\pi^+\pi^-)$	1.4×10^{-6}	0.8×10^{3}	< 0.2
$B_s \rightarrow \phi(K^+K^-)\phi(K^+K^-)$	1.3×10^{-6}	1.2×10^{3}	<1.1
$B_s \rightarrow \mu^+ \mu^-$	3.5×10^{-9}	17	<5.7

Promising physics potential to study numerous loop-induced rare decays.
 Still room to adjust trigger in order to increase the rate for channels of topical interest

$$\mathsf{B}^0 \to \mathsf{K}^{*0} \,\mu^+ \,\mu^-$$

 Forward-backward asymmetry in the μμ rest frame A_{FB}(s) is sensitive probe of new physics [Ali et al]

• Sensitivity for 2 fb⁻¹:

N _{evts}	4.4×10 ³	
B/S	<2 (90% CL)	
Zero point located	±0.04	

Systematics

- Some potential sources of systematic uncertainty:
 - B/B production asymmetry;
 - Charge dependent detection efficiencies;
 - Background asymmetries;
 - Trigger bias (eg for flavour tag, proper time acceptance)
- Some experimental handles available:
 - Control channels (eg $J/\psi K^*$ for $J/\psi K_s$)
 - Regular reversal of spectrometer B field
 - Simultaneous fit of signal and background (eg $D_s K/D_s \pi$)
 - Analysis of tagging performance in separate categories (eg triggered on B signal/triggered on other tracks)
- High trigger rate provided unbiased samples to study systematics using data.

Conclusions

- The installation of LHCb is progressing well. We will be ready in 2007.
- Expected performance will improve:
 - → more decays channels: e.g. $B_d \rightarrow \rho \rho$.
 - better trigger and tagging algorithms;
 - → new methods: e.g. γ in $B_s \rightarrow D_s K$ and $B_d \rightarrow D^{(*)} \pi$
- Many complementary ways to reveal physics beyond the standard model and to pin down its nature:
 - $\rightarrow \Delta m_s$
 - $\clubsuit A^{CP}_{\mathrm{B_s} \to \mathrm{J}/\psi\phi}(t)$
 - \rightarrow BR (B_s $\rightarrow \mu^{+}\mu^{-})$
 - $\rightarrow \gamma \text{ in } B_s \rightarrow D_s K \text{ versus } B_s \rightarrow K^+ K^- + B_d \rightarrow \pi^+ \pi^-$
 - → $\phi_{\rm s}$ in ${\rm B_s} \rightarrow {\rm J}/\psi \phi$ versus ${\rm B_s} \rightarrow \phi \phi$