Dark Matter

Sven Vahsen, University of Hawaii

Ordinary Matter

- Ordinary matter consists of atoms
- Atoms consist of three types of elementary particles
 - Up quark
 - Down quark
 - Electron

 $-v_e$

• In radioactive decays, also the electron neutrino is produced

Ordinary Matter

Three generations of particles

175 GeV (=proton masses). Discovered 1995.

- "2nd and 3rd generation"
 - Discovered with cosmic rays and man-made particle accelerators
 - Heavier and unstable
 - Abundant in early universe

What are the Force of Nature?

Even *forces* are due to elementary particles!

The Four Forces of Nature

- Four types of forces each has it's own force carrier particles
- Electromagnetic interaction
- Strong nuclear force
- Weak Nuclear force

FORCE CARRIERS

G

• Gravity

Putting it all together

 Standard Model predicted Higgs Boson

Questions:

How can you see matter? What is happening when you see...

> ...the sun? ...other students? ...yourself in a mirror? ...a dark object?

Things we cannot see with photons

 Only 5% of energy in the universe due to ordinary matter

Question:

Is dark matter... dark?

What does the Dark Matter consist of?

http://home.slac.stanford.edu/pressreleases/2006/20060821.htm

Standard Model particles cannot explain dark matter We think dark matter may be a new type of elementary particle!

Supersymmetry

• We may need to extend the standard model

Supersymmetry predicts new particles. Including dark matter particles!

12

12

How can we test this *hypothesis*?

- 1. Produce dark matter with particle accelerators
- 2. Try to directly detect dark matter
- 3. Observe decays of dark matter into visible particle

The Large Hadron Collider (LHC)

- Highest Energy Accelerator to date: Two beams of 7 TeV protons \rightarrow E=14 TeV
- 4 large detectors where protons collide
- CMS and ATLAS: Search for the Higgs Boson & Physics beyond Standard Model
- > 10,000 scientists and engineers from over 100 countries

* ATLAS = A Toroidal LHC apparatus

• ATLAS surrounds one of several points where particles will collide.

- ATLAS "checks" what comes out of these collisions every 25 ns
- about 100 "snapshots" / second are written to disk for detailed analysis by the collaboration.

Length : ~ 46 m Radius : ~ 12 m Weight : ~ 7000 tons ~ 10⁸ electronic channels ~ 3000 km of cables

Pixels: At the Heart of ATLAS

How to transport a Muon System

How to transport a pixel detector

Barrel integrated at CEI

On the way to CERN!

Punahou Master Class

Smallest detector in ATLAS

Completed Detector Installed June 2007

18

LHC Construction

0.00

• 7-TeV protons kept in orbit by superconducting magnets

• 8.33T, cooled by superfluid Helium at 1.9K

Lowering one of 1232 di-pole magnets/

... after installation 100 m under ground

First Beams Circulated September 9th 2008

2012 Higgs Discovery!

Higgs announcement seminar on 4 July 2012

Nobel prize in 2013

So far, we have not detected dark matter at the Large Hadron Collider...

How can we test this *hypothesis*?

- 1. Produce dark matter with particle accelerators
- 2. Try to directly detect dark matter
- 3. Observe decays of dark matter into visible particle

Are We Surrounded By Dark Matter?

We can also try to directly detect Dark Matter

- Huge detectors, Looking for 1 "blip" per year!
- Very clean, to avoid false detection from radioactivity
- Underground, to avoid false detection from cosmic rays

D³ - Directional Dark Matter Detector

I'm working on this!

Prototype detector at UH Manoa

This is how I want to detect it!

If this works, I'd like to build a dark *matter telescope* in the future, to see where the dark matter comes from!

Questions?