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Abstract

This paper discusses a computing architecture that uses both classical
parallelism and quantum parallelism. We consider a large parallel array of
small quantum computers, connected together by classical communication
channels. This kind of computer is called a type-II quantum computer, to
differentiate it from a globally phase-coherent quantum computer, which
is the first type of quantum computer that has received nearly exclu-
sive attention in the literature. Although a hybrid, a type-II quantum
computer retains the crucial advantage allowed by quantum mechanical
superposition that its computational power grows exponentially in the
number of phase-coherent qubits per node. Only short-range and short
time phase-coherence is needed, which significantly reduces the level of
engineering facility required to achieve its construction. Therefore, the
primary factor limiting its computational power is an economic one and
not a technological one, since the volume of its computational medium
can in principle scale indefinitely.
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tum network; quantum lattice gas.
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1 Introduction

In 1982 towards the end of his life, the famous American physicist Richard
Feynman conjectured that it would be possible to simulate many-body quantum
mechanical systems using a new type of computer, which he called a quantum
computer [1]. After nearly two decades of remarkable theoretical and experi-
mental progress, a few simple quantum computers have finally been constructed
and a few simple quantum algorithms tested.

At the crux of quantum computing is the principle of the quantum me-
chanical superposition of states. Quantum mechanical superposition of states
does not naturally play much of a role in our universe at macroscopic scales
of the chip size in a conventional desktop digital computer or greater. This is
because at these relatively large scales, the quantum state of the astronomical
number of particles comprising any desktop-scale computer completely loses all
phase-coherence.1 Nevertheless it is argued that with precise and meticulous
engineering, quantum mechanical superposition of persistent qubits, sustained
by quantum error correction techniques [4], can be exploited to solve problems
that are intractable by any known classical means (for example, factoring large
composite numbers [5] or simulating large many-body quantum systems [6, 7]).
This is now widely believed because of potency of quantum error codes to correct
bit-flip errors and phase errors [8, 9] even though the hypothetical quantum com-
puting device would necessarily be of macroscopic size given the large number of
phase-coherent qubits (on the order of a million qubits) required for any practical
algorithm. Yet we know that quantum algorithms that require a large number of
globally entangled qubits are difficult to experimentally implement and, in the
case of NMR quantum computers at least, the use of additional qubits for error
correction causes a substantial loss of signal strength [10]. Therefore, globally
phase-coherent quantum algorithms are mainly of academic interest only (at
least, until a phase-coherent quantum computer embodying millions of entan-
gled qubits is constructed in a way that can exploit many millions more ancillae
for quantum error correction).

In contrast, there exists a class of quantum algorithms that also requires
many qubits (at least millions), but which only requires that the qubits be en-
tangled over short ranges (the width of a single molecule) and for only short
times (less than the natural T2 spin-spin decoherence time) [11, 12]. Such quan-
tum algorithms are suited for implementation on large parallel arrays of small
quantum computers, with each quantum-computing node embodying only a
few qubits, and where a classical communication network connects the nodes

1 To date, a macroscopic scale computer called an nuclear magnetic resonance (NMR)
quantum computer, with a computational medium comprising an astronomical number of
particles (about as many as contained in a digital chip’s wafer), has performed simple quantum
computations [2, 3]. However, the liquid-state NMR quantum computer has embodied only
a few quantum bits, and is ultimately limited to embodying perhaps no more than a dozen.
Effectively, quantum phase-coherence is retained for only a short time (for example, the spin-
spin decoherence times is about 700 milliseconds for the alanine molecule) over an extremely
short distance (the width of a single alanine molecule). A brief review of the use of NMR
spectroscopy for quantum computation is given below in §4.
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together. This is a different type of quantum computing architecture than is
usually considered in the literature and deserves its own definition and place.
The usual type of quantum computing architecture and this second type are
both defined in §2.

It is argued here that this second type of quantum computing architecture of-
fers a practical solution for general purpose computing for three reasons. First,
as argued in §2, only a limited degree (in both space and time) of quantum
phase-coherence is required. Second, as argued in §3, its computational power2

grows exponentially in the number of phase-coherent qubits per node. And
third, as argued in §4, the number of quantum bits per unit volume is naturally
commensurate with the density of matter in the liquid or solid state (that is, on
the scale of Avagadro’s number of qubits per cubic centimeter) over arbitrarily
large volumes. Therefore, the achievable computational power of this second
architectural type is not unattainable because of overriding technological diffi-
culties but is mainly limited by the cost of the technological implemenation, as
is characteristic of massively parallel classical computing architectures.

In short, we envision a quantum computing architecture with many quantum-
computing nodes spatially arranged in a regular periodic lattice where small
groups of neighboring qubits within each node are homogeneously updated by
local quantum gate operations applied simultaneously across the lattice. This
type of quantum computer is characterized by both classical parallelism (there
being many small quantum computer nodes) and quantum parallelism (there
being, in general, quantum superposition and entanglement within each node
for some short time span). Therefore, as mentioned above and discussed in
more detail in §3, its computational power is the product of the number of
nodes in the array times the number of quantum states per node that can be
simultaneously superposed. This is a central point of this paper.

2 Definition of Two Types of Quantum Com-
puters

In this section, we define two types of quantum computing architectures: type-I
quantum computers have global phase-coherence, and type-II quantum comput-
ers have local phase-coherence, limited both in space and time. Fundamental
to both architectures, the computing algorithm is represented as a sequence of
quantum gate operations [13]. Preliminary quantum gate sequences necessary
for modeling a few notoriously difficult physical systems have been “analyti-
cally” worked out, but have not yet been tested thoroughly using either numeri-
cal simulations or physical experiments. Furthermore, quantum error correction
techniques, which are not discussed in this paper, are essential to type-I archi-
tectures and not essential, but potentially applicable, to type-II architectures.

2 I have not formally defined what is meant by the “computational power” of a quantum
computer, and instead defer to the usual usage of this term as in the context of classical
computation.
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2.1 Type-I

In a type-I computer, each qubit may be entangled with any or all other qubits
and the system wave function must remain phase-coherent for the duration of
the entire quantum gate sequence needed to implement a particular algorithm.
The outcome may be determined by measuring one or a few qubits. Type-I
quantum computers may be used, for example, for Shor’s factoring algorithm [5]
or a globally phase-coherent quantum lattice-gas algorithm of the kind developed
by Meyer [6], Boghosian and Taylor [7], or Yepez [14].

Developing a quantum algorithm for a type-I quantum computer amounts to
unfolding the quantum mechanical evolution operator into an ordered sequence
of basic (or fundamental) 2-qubit quantum gate operations. Let Υ̂ denote a
universal 2-qubit quantum gate. If Ĥ is the Hamiltonian for a quantum spin
system that represents the quantum computer with Q qubits, in general Ĥ is
represented by a dense 2Q × 2Q matrix. We must be able to write the quantum
mechanical evolution operator that evolves the state of the system wave function
for time span τ as the following product

e−iĤτ/h̄ = Υ̂N · · · Υ̂2Υ̂1Υ̂0. (1)

Here each universal gate operation, Υ̂i, is represented by sparse 2Q ×2Q matrix,
for 0 ≤ i ≤ N . The quantum mechanical evolution equation in Heisenberg form
is

|Ψ(	x1, . . . , 	xV ; t+ τ)〉 = Υ̂N · · · Υ̂2Υ̂1Υ̂0|Ψ(	x1, . . . , 	xV ; t)〉. (2)

Equation (2) can be decomposed into a set of equations, one per each gate
operation, using N intermediate states |Ψi〉, for 0 ≤ i ≤ N

|Ψ1〉 = Υ̂0|Ψ(	x1, . . . , 	xV ; t)〉 (3)
|Ψ2〉 = Υ̂1|Ψ1〉
|Ψ3〉 = Υ̂2|Ψ2〉

...
...

...
|Ψ(	x1, . . . , 	xV ; t+ τ)〉 = Υ̂N |ΨN 〉.

Here, all N + 1 gate operations are applied within the time period τ . Equa-
tion (3) formally expresses a general quantum algorithm for a type-I quantum
computer. For any quantum algorithm that would give a solution to a practical
problem that could not be obtained efficiently by classical means, very many
qubits would have to remain phase-coherent and globally entangled over the
entire course of the quantum computation, and this in turn requires the use of
extra qubits to correct for bit-flip and phase errors [4, 8]. The use of quan-
tum error correction codes is an intrinsic part of any practical type-I quantum
computing algorithm.

Let us consider, as an example, a quantum lattice-gas algorithm [14]. In a
quantum lattice gas, the quantum algorithm is quite simple and can be expressed
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in a form like Equation (3), but with only a single intermediate state3 |Ψ′〉

|Ψ′〉 = Ĉ|Ψ(	x1, . . . , 	xV ; t)〉 (4)
|Ψ(	x1, . . . , 	xV ; t+ τ)〉 = Ŝ|Ψ′〉. (5)

Each qubit, |q〉 = α|0〉 + β|1〉, in a quantum lattice-gas system is located at a
particular node of the lattice with coordinate 	x. Each qubit is also associated
with a particular lattice vector, v̂. The amplitude squared of the “one” state,
|β|2, by definition equals the probability of finding a particles at location 	x
moving with unit speed along direction v̂. That is, the occupancy probability of
a local position-momentum state is defined to be |β|2.

The unitary operator Ĉ changes the occupancy probabilities on each node
independently. It causes local collisional scattering of particles at each node
in the system independently, and therefore, can be written as a V -fold tensor
product over the lattice nodes, Ĉ =

⊗V
x=1 Û . In general U is a block diagonal

unitary matrix, where each block mixes local on-site configuration that have
the same additive conserved quantities. For the simplest one dimensional quan-
tum lattice-gas model [15], each Û is implemented by a single quantum gate
operation. For more complex models, Û would be implemented by a sequence
of quantum gates. With N qubits per node, Û is represented by a 2N × 2N

size matrix. All the gate operations needed to implement Û are homogeneously
applied on a node-by-node basis causing local superposition and entanglement
within each node.

The unitary operator Ŝ shifts the occupancy probabilities between nodes, but
otherwise does not change them. It causes particle movement and is represented
by an orthogonal permutation matrix, and would otherwise cause strictly clas-
sical data movement if there were not superposed or entangled on-site qubits.
In a type-I quantum computer, the application of the streaming operator Ŝ
spreads quantum correlations across the lattice. A detailed treatment of a glob-
ally phase-coherent quantum lattice has shown that quantum correlations can
significantly alter the macroscopic scale transport properties of the system [14].
The type-I approach has received almost exclusive attention. Its development
may take decades, if achievable at all. At the Air Force Research Laboratory4,
we are also focusing our attention on the type-II approach defined in the next
section.

3 Actually, this is an oversimplification of the quantum lattice-gas algorithm because an
additional intermediate state is needed to implement the streaming operator Ŝ. Two “checker-
board” lattice partitions must be used to correctly move the particles. So, the streaming
operation is done in two steps, Ŝ = Ŝ1Ŝ2. Furthermore, intermediate states are needed in
general to implement the collision operator Ĉ in two and three dimensional quantum lattice-
gas systems.

4 The quantum computing project, Air Force Office of Scientific Research Task
No. 2304TD, is conducted at AFRL/VSBL, Hanscom AFB in Massachusetts (see
http://qubit.plh.af.mil/).
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2.2 Type-II

A type-II quantum computer represents a network or array of small quantum
computers interconnected by classical communication channels. Each qubit may
be entangled with only nearby qubits at a particular node of the quantum
computer and for only for a short time. The system wave function is always
factorized into a tensor product state over the nodes of the lattice

|Ψ(	x1, . . . , 	xV ; t)〉 = |ψ(	x1, t)〉 ⊗ |ψ(	x2, t)〉 ⊗ · · · ⊗ |ψ(	xV , t)〉. (6)

With N qubits per lattice node, the on-site ket |ψ(	x, t)〉 resides in a Hilbert
space of size 2N ×2N . The outcome of a computation is determined by measur-
ing the probability of qubit occupancies on all nodes of the array using either
an ensemble or coarse-grain averaging technique. That is, the probability of
occupancy of a qubit |q〉 located at coordinate 	x and corresponding to lattice
vector 	v is determined by computing the following trace

f(	x,	v, t) = Tr (|Ψ(	x1, . . . , 	xV ; t)〉〈Ψ(	x1, . . . , 	xV ; t)|n̂q) , (7)

where n̂q is the number operator associated with qubit |q〉.
A type-II quantum computer can be used to run a “factorized” quantum

lattice-gas algorithm. An example application of the factorized quantum lattice-
gas model is the simulation of of diffusion [15] and a viscous Navier-Stokes fluid
[11, 12]. In a factorized quantum lattice gas, the quantum algorithm is also
expressed in a form like Equation (3), but with two intermediate states |Ψ′〉
and |Ψ′′〉

|Ψ′〉 = Ĉ|Ψ(	x1, . . . , 	xV ; t)〉 (8)
|Ψ′′〉 = Γ̂|Ψ′〉 (9)

|Ψ(	x1, . . . , 	xV ; t+ τ)〉 = Ŝ|Ψ′′〉. (10)

The additional operation, denoted by Γ̂, is required to control the system wave
function so that it remains a tensor product over the on-site submanifolds after
application of the streaming operator Ŝ. The operator Γ̂ is a projection operator
and is applied homogeneously across the nodes of the lattice and acts on all
the qubits at each node. Therefore, it can be expressed as a tensor product,
Γ̂ =

⊗V
x=1 Γ̂x. That is, Γ̂x acts on the on-site ket |ψ′(	x, t)〉 independently. It

corresponds to a measurement of the occupancy probabilities of each qubit as
specified in (7) and causes a collapse of the system wave function and hence is
non-unitary

|ψ′′(	x, t)〉 = Γ̂x|ψ′(	x, t)〉 =
n⊗

a=1

|qa〉. (11)

The measurement procedure specified by the application of Γ̂ keeps all the oc-
cupancy probabilities conserved, keeps each on-site ket (and in turn, the system
wave function) unit normal, and in the context of the lattice-gas method obeys
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the principle of detailed-balance. That is, after the application of Γ̂, we require
that

f ′′(	x,	v, t) = f ′(	x,	v, t), (12)

for all 	x and 	v. A treatment of a locally phase-coherent quantum lattice has
shown there exists a nontrivial projection operator that satisfies the requirement
given by Equation (12), and which obeys the principle of detailed-balance [12].

The repeated measurement procedure specified by the application of the pro-
jection operator Γ̂ during each and every time step evolution of the quantum
computer wave function is a distinguishing characteristic of a type-II quantum
computer. This measurement step alleviates uncontrolled bit-flip and phase
errors for all the qubits in the system. Therefore, ancillea for quantum error
correction are not needed in a type-II quantum computer. Using 13C labeled
molecules such as chloroform (2 qubits), dibromopropionic acid (3 qubits), ala-
nine (3-4 qubits), or transcrotonic acid (5 qubits) in an NMR-based type-II
quantum computer gives us only a few qubits per node. Aside from the fact
that allocating any of these qubits for the purpose error correction substantially
reduces the signal strength [10], practically speaking, at present we do not have
any qubits to spare for error correction and all those available are used directly
for data encoding and information processing. If in the future it were possi-
ble to build a type-II quantum computer with many phase-coherent qubits per
node, then quantum error correction could potentially be used for improving
the efficiency and durability of the type-II quantum computer.

3 Computational Scaling with a Type-II Quan-
tum Computer

With a type-II array with V nodes, and n qubits per node, the computational
power of the machine scales as V 22n, which is exponential in n. The factor of
V arises from the classical parallelism of having multiple quantum computing
nodes. The exponential factor arises from quantum parallelism since a square
matrix of size 2n × 2n is needed to represent the evolution operator of the n
phase-coherent qubits per node. The combined computational power of a type-
II quantum computer is just the product of these two factors. Therefore, if a
quantum computer array is constructed with enough nodes that its computa-
tional power is equivalent to a conventional supercomputer, then a redesign of
the machine using n → n + 1 qubits per node doubles its performance. For
example, if a hypothetical NMR array using chloroform (a n=2 molecule) is
replaced with one using dibromoproprionic acid (a n=3 molecule, considering
only the carbons), its accessible memory doubles while the total volume of the
computational medium remains constant (a fixed volume of liquid in a small test
tube). This type of scaling law does not apply to classical computers, where
twice as much circuitry (double the volume) is needed to double its accessible
memory.

Figure 1 is a log-linear plot of the computational scaling law of a type-II
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Figure 1: Estimation of the number of equivalent floating-point operations needed to
simulate, on a conventional computer, the collision process for a factorized quantum lattice
gas that occurs in a single time step. When implemented on a classical computer, the col-
lision process involves the following steps: (1) tensor product operation for projection; (2)
matrix multiplication of the on-site ket by a unitary collision matrix of size 2n × 2n; and, (3)
measurement of the qubit occupations.

quantum computer. The number of nodes in the lattice is the cube of the
lattice size, V = L3, for the three dimensional lattice pictured below in §4 in
Fiqure 2.

4 Quantum Computing using Nuclear Magnetic
Resonance Spectroscopy

Among the approaches taken to date, natural quantum mechanical interac-
tions in Carbon-13 have been controlled by nuclear magnetic resonance (NMR)
to demonstrate simple computations [2, 3]. The spin-1/2 nucleus of a single
Carbon-13 isotope in an external magnetic field (∼ 10 Tesla) is a good example
of a two-level quantum system. The two quantum states of the nucleus, the
spin-up (aligned) and spin-down (anti-aligned), are used to embody a qubit.
Several Carbon-13 isotopes, such as the three consecutive carbon nuclei in the
organic amino acid called “labeled alanine,” have recently been used as proof-
of-concept. Naturally occurring quantum mechanical interactions among the
isotopes in the alanine molecule have been coaxed using NMR spectroscopy
to do simple computations as a sequence of quantum gates (for example, the
Deutsch-Jozsa algorithm and the discrete Fourier transform).

Essentially error-free NMR bulk computation allows for accurate and non-
destructive qubit measurement using a large ensemble (∼ 1018) of identical
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quantum computers. Yet, the present day NMR spectroscopic technique is not
likely to scale to more than a dozen qubits per quantum computer.5

100 microns 10 cm

Figure 2: A depiction of a hypothetical cubical array of small quantum computers. Each
“node” in the cubical lattice is a parcel of liquid or solid (i a liquid each node is effectively
isolated from neighboring nodes because of the relatively slow rate of thermal diffusion of
molecules in the sample). Computation, corresponding to the lattice-gas collision operator,
is performed in classical parallel fashion independently at each node containing “incoming”
qubits. This is accomplished by applying radio frequency electromagnetic pulses homoge-
neously across the entire sample. The computations occurring within each node is quantum
mechanical in nature since the superposition of states is exploited locally. Prior to a loss of
signal, on the order of the T2 spin-spin decoherence time, all “outgoing” qubit occupancies are
subsequently measured. Then, the quantum state of the entire system (which has been col-
lapsed into separable tensor product form) is refreshed as the qubit occupancies are rewritten
in a permutated order corresponding to the lattice-gas streaming operator. This completes
one computational cycle.

In the NMR machine, an ensemble of molecules (∼ 1018) embodies a single
“mesoscopic n-qubit quantum gate,” which is mathematically represented by a
unitary matrix in the special unitary group SU(n) (where n is a small number
likely to be ≤ 12 by present technology) that acts on n-qubits in a 2n sub-
manifold of the full Hilbert space. Since a laboratory liquid sample comprises
Avagodro’s number of molecules (∼ 6 × 1023) there are millions of quantum
gates per mole. Hence, the sample can be partitioned into a “Bravais lattice”
with a gate at each node of the lattice (see Figure 2).6

5 Other approaches to quantum computing are based on quantum dots, Josephson junc-
tions, SQUIDs, spin electronics, and optical lattices.

6 In a liter of liquid, a 5123 array of 6-qubit quantum gates may be accommodated in the
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The computational medium is at room temperature (although surrounded
by a supercooled superconducting magnet) and the experimental apparatus is
nearly “off-the-shelf.” The large number of “identical” molecules per quantum
gate gives a high signal-to-noise ratio when “reading” the quantum state of
a gate (causing phase decoherence on the order of a part per million). Since
the atomic nuclei resonate at a unique Bloch frequency fixed by an externally
applied magnetic field (like a top processing in a uniform gravity field), a uniform
gradient in the field allows for spatial localization within the network. Individual
qubits are differentiated by energy level splitting arising from magnetic dipole-
dipole coupling within the molecule. This provides a means of “addressing”
data within an individual gate.

Since each node (with a ∼ 1 millimeter gate-size clocked at ∼ 1 kHz) is
effectively isolated from every other node (thermal diffusion of molecules in
the liquid causes them to move about a micron every millisecond), quantum
computation can be done independently and simultaneously across the entire
network. This in principle allows for homogeneous parallel computation of the
particle collisions occurring at the nodes in the lattice. Furthermore, because
of superposition of classical electromagnetic fields, multiple quantum computer
nodes within the network can be simultaneously addressed. This allows for
parallel computation of particle motion between the node-pairs where particle
occupancy information is transfered by auxilary classical means.

Table 1: Three Different Pictures: A Single Point of the System

NMR QC Lattice-Gas QC
spin- 12 nuclei (i.e. hydrogen qubit |q〉 = α|0〉 + β|1〉 particle’s local state
or carbon 13-isotope) n̂α, êa

Wigner-Seitz cell or a molecule microscopic quantum computer site of lattice 	x
(i.e. chloroform or alanine)

∼ 1018 nuclei mesoscopic quantum computer site of superlattice 	X
(i.e. parcel of liquid or solid) many quantum computers at the mesoscopic scale

RF pulse sequence gate Û on-site collision operator
free induction decay microscopic Ωa(	x, t)

entanged spins ket |ψ〉 many outgoing collision
possibilities

bulk absorption of RF pulse ensemble measurement mesoscopic quantity
occupation probability
fa(	x, t) = Tr[�(t)n̂α]

gradient fields Von Neumann measurement tensor product on-site ket
Pure State |ψ(	x, t)〉 → ⊗B

a=1 |qa(	x, t)〉

Quantum computing theory is often pictured with a high level of mathemat-

future (massive classical parallelism).
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Table 2: Three Different Pictures: The Entire System

NMR Array QC Lattice-Gas QC
magnetic resonance imaging array of mesoscopic quantum discrete lattice

computers
molecular independence tensor product wave function mesoscopic ensemble

|Ψ〉 = ⊗V
x=1 |ψ(x)〉 of states (only local

entanglement)
homogeneously applied RF tensor product operator parallel computation

Ĉ =
⊗V

x=1 Û on-site collisions

relaxation classical communications particle motion
state re-preparation fa(	x, t) → fa(	x+ �êa, t+ τ)

ical abstraction whereas quantum-computing experimentation is often pictured
using a broad range of physical concepts and practices. The connection between
these two pictures has been established in the quantum computing literature
[2, 3]. However, to picture lattice-gas quantum computation, one necessarily
draws upon many concepts from kinetic particle theory and statistical mechan-
ics as well as concepts from the field of computer science relating to systolic
processing and massively parallel single-instruction multiple data processing.
Making the connection between the lattice-gas quantum computation picture
and the usual theoretical or experimental quantum computation pictures may
be difficult to those new to this subject matter. Therefore, to help make the
connection between these three different pictures (which are three equally valid
ways of representing the same thing), two tables are provided as a learning aid
(see Figures 1 and 2). For example, in the first row of Table 1 the concept of a
qubit is rendered from three different viewpoints. To an NMR spectroscopist,
a qubit is just the quantum number Iz of the state of a spin-12 nuclei of say
a carbon 13 isotope oscillating in an external magnetic field along the ẑ-axis,
as an example. To a computer scientist, a qubit is an abstract ket in a two
dimensional Hilbert space, |q〉 = α|0〉+β|1〉. And to a computational physicist,
a qubit encodes a particle’s occupation of a single local state, which is associ-
ated with a particular number operator, n̂α. Each of the rows of tables 1 and
2 illustrates the connection between a particular quantity or concept from the
three different viewpoints.

5 Conclusion

Presented in this paper was the simple idea of a quantum computing archi-
tecture that is a hybrid between classical massively parallel architecture and an
architecture using quantum gates that operate on a set of phase-coherent qubits.
A computer built using such hybrid architecture is herein termed a type-II quan-
tum computer. Its salient features are that the number of phase-coherent qubits
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needed is quite small (less than a dozen for many practical applications such as
computational fluid dynamics), its computational power grows exponentially in
the number of phase-coherent qubits, and its computational density (number of
qubits per unit volume) can be very high while its total computational volume
(the volume of matter directly embodying the actual computation) can be arbi-
trarily large. Quantum lattice-gas algorithms were used as an example to define
and illustrate certain details of type-I and type-II quantum computers. The
technological application of NMR spectroscopy to type-II quantum computing
was also presented as a means of shedding light on this second type of quantum
computing architecture, but the type-II quantum computing architecture can
be implemented using other technologies as well.

Moore’s law, accurately obeyed by the computing industry now for over five
decades, points towards information storage and processing at such a small spa-
tial scale that classical electrical circuit theory will be insufficient for continued
engineering progress. Quantum mechanical techniques will likely be an essen-
tial tool for commercial-grade engineering of computational devices within two
decades. Practical type-II quantum computing technology should have appli-
cation to type-I quantum computers in the longer-term, being an incremental
step in that direction.
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