Disadvantages of Existing Board Stack

- **BLAB3 issues:**
 - Replacement requires re-soldering.
 - Calibration requires a front board adapter to inject test signals.

- **Firmware issues:**
 - No on-board clock: need clock distribution to test any firmware.
 - Fiberoptic readout only: need back-end working to verify any data out.

- **Size issues:**
 - Significant amount of wasted space.
 - Existing modules (top right) are too big for Belle II.
 - Split module (lower right) where transceivers are separated from digitizers might meet size restrictions, but this is untested and may not preserve signal fidelity.
K. Nishimura (Hawai’i)

New Front-end Board Stack

Front
- Connects HV board to PMTs
- Connects PMT output to ASIC input

HV
- High voltage components for PMTs
- Cooling for high voltage components

Standard Control, Read-Out, Data (SCROD)
- FPGA (ASIC control)
 - Virtex4, Spartan6
- 2 Fiber transceivers
- 2 RJ45
 - Clock Distribution
 - LVDS (JTAG)
- Mini USB – for easy bench testing

Digitizer Boards (BLAB)
- Carrier card for ASICs
 - 4 ASIC daughter cards per carrier
- ASIC in-situ testing components
 - e.g., pulser for channel checks

ASIC
- 1 BLAB3 per card
- DACs

Interconnect Board
- Connects SCROD & BLAB
 - Layout of connectors are forced to be unique because of size constraints
- Power regulation/distribution

= board-to-board connectors
K. Nishimura (Hawai‘i)

New Front-end Board Stack

Mechanical Mockup – Isometric View

- Digitizer Boards (BLAB)
 - Carrier card for ASICS
 - 4 ASIC daughter cards per carrier
 - ASIC in-situ testing components
 - e.g., pulser for channel checks

- ASIC
 - 1 BLAB3B per card
 - DACs for bias voltages

- **Front**
 - Connects HV board to PMTs
 - Connects PMT output to ASIC input

- **HV**
 - High voltage components for PMTs
 - Cooling for high voltage components

- **Stg**
 - F
 - 2
 - 2
 - M
Remaining system pieces are being developed/tested.

- Changes to front-end don’t significantly impact other elements (actually require fewer numbers of boards on back-end).
- Calibration studies in Hawaii are ongoing in preparation for the arrival of the next round of ASICs.
FEE under development: parallel effort with Belle II

Belle II bPID FEE module: based on a 2 x 4 array of Hamamatsu SL-10 MCPs with a 4x4 anode structure (16ch per PMT).

mTC FEE module: based on a 1 x 2 array of Planacon MCPs with a 8x8 anode structure (64ch per PMT).

- Both of these FEE modules are being developed in parallel.
- Each module provides 128 readout channels.
- Five of seven PCBs are common to each module.