Three-body CP Eigenstates

Tim Gershon (KEK) & Masashi Hazumi (KEK)
21 January 2003

Super B Factory Workshop
Opening Position

- CP violation observed in a handful of modes
- KM scheme is *elegant* and *effective*, but is it *enough*?
- Already evidence for beyond SM CP violation
- Desire multiple probes of CPV phenomena
$b \rightarrow sqq$ Anomaly

<table>
<thead>
<tr>
<th>Charmionium Modes</th>
<th>OPAL 98</th>
<th>0.27 \pm 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALEPH 00</td>
<td>0.48 \pm 0.16</td>
</tr>
<tr>
<td></td>
<td>CDF 00</td>
<td>0.79 \pm 0.44</td>
</tr>
<tr>
<td>BABAR 02</td>
<td>0.741 \pm 0.067 \pm 0.034</td>
<td></td>
</tr>
<tr>
<td>Belle 03</td>
<td>0.733 \pm 0.057 \pm 0.028</td>
<td></td>
</tr>
<tr>
<td>Average (charmonium)</td>
<td>0.736 \pm 0.049</td>
<td></td>
</tr>
</tbody>
</table>

| ϕK_S^0 | BABAR 03 | 0.45 \pm 0.43 \pm 0.07 |
| | Belle 03 | -0.96 \pm 0.5 \pm 0.09 |

| ΥK_S^0 | BABAR 03 | 0.02 \pm 0.44 \pm 0.03 |
| | Belle 03 | 0.43 \pm 0.27 \pm 0.05 |

| $K K K^0$ | Belle 03 | 0.51 \pm 0.28 \pm 0.05 |
| Average (s penguin) | 0.24 \pm 0.15 |

Average (All) | 0.595 \pm 0.047 |

$\sin(2\beta_{(eff)})$
CP Violation Analyses

- Time-dependent studies of $B \to CP$ eigenstates have been very successful
 - Phenomenology rather straightforward
- CP violation measurements from $B \to$ non-CP final states have more unknown parameters
 - Analysis is harder, requires more statistics
 - Their time will certainly come
- Number of two-body CP eigenstates is finite
$B^0 \rightarrow P^0 Q^0 X^0$

- B^0 is a neutral spin-0 particle
- Let P^0, Q^0, X^0 be neutral particles
- L is orbital angular momentum between $P^0 - Q^0$
- L' is orbital angular momentum between $(P^0 - Q^0) - X^0$
- Conservation of angular momentum:
\[J_{B^0} = 0 = L + L' + S_{P^0} + S_{Q^0} + S_{X^0} \]
CP of $P^0Q^0X^0$

- $CP(P^0Q^0X^0) = CP(P^0) \ CP(Q^0) \ CP(X^0) \ (-1)^L \ (-1)^{L'}$

- If P^0, Q^0, X^0 are all spin-0 particles:

 conservation of angular momentum $\rightarrow L' = L$

- If P^0, Q^0, X^0 are all spin-0 CP eigenstates:

 final state is a CP eigenstate:

 $CP(P^0Q^0X^0) = CP(P^0) \ CP(Q^0) \ CP(X^0)$

- P^0, Q^0, X^0 candidates:

 $\pi^0, \eta, \eta', f_0, a_0, K_S, K_L, D_{CP}, \eta_c, \chi_{c0}$
Comments on $B^0 \rightarrow P^0 Q^0 X^0$

- Enormous number of possible final states!
- In general, more different quarks in final state
 \rightarrow more amplitudes can contribute
- Concentrate on (hopefully cleaner) final states containing (at least) two identical particles
\[B^0 \rightarrow P^0 P^0 X^0 \]

- \(B^0 \) is a neutral spin-0 particle
- Let \(P^0, X^0 \) be neutral spin-0 particles
- \(L \) is orbital angular momentum between \(P^0 - P^0 \)
- Bose-Einstein statistics \(\rightarrow L = 0, 2, 4, ... \)
- Conservation of angular momentum: \(L' = L \)

\[CP(P^0 P^0 X^0) = CP(X^0) \]
Advantage of $B^0 \rightarrow P^0 P^0 X^0$ (?)

- $J^P(P^0 P^0) = 0^+, 2^+, 4^+, ...$
- Decays to similar final states (eg. $B^+ \rightarrow \chi_{c(0,2)} K^+$) forbidden in factorization (although observed)
- Does this help us?
- Expert input is welcome!
Possible $B^0 \rightarrow P^0 P^0 X^0$

<table>
<thead>
<tr>
<th>X^0</th>
<th>π^0</th>
<th>η</th>
<th>η'</th>
<th>f_0</th>
<th>a_0</th>
<th>K_S</th>
<th>K_L</th>
<th>D_{CP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0</td>
<td>$\pi^0 \pi^0 \pi^0$</td>
<td>$\eta \pi^0$</td>
<td>$\eta' \eta' \pi^0$</td>
<td>$f_0 f_0 \pi^0$</td>
<td>$a_0 a_0 \pi^0$</td>
<td>$K_S K_S \pi^0$</td>
<td>$K_L K_L \pi^0$</td>
<td>$D_{CP} D_{CP} \pi^0$</td>
</tr>
<tr>
<td>η</td>
<td>$\pi^0 \pi^0 \eta$</td>
<td>$\eta \eta$</td>
<td>$\eta' \eta'$</td>
<td>$f_0 f_0 \eta$</td>
<td>$a_0 a_0 \eta$</td>
<td>$K_S K_S \eta$</td>
<td>$K_L K_L \eta$</td>
<td>$D_{CP} D_{CP} \eta$</td>
</tr>
<tr>
<td>η'</td>
<td>$\pi^0 \pi^0 \eta'$</td>
<td>$\eta \eta'$</td>
<td>$\eta' \eta'$</td>
<td>$f_0 f_0 \eta'$</td>
<td>$a_0 a_0 \eta'$</td>
<td>$K_S K_S \eta'$</td>
<td>$K_L K_L \eta'$</td>
<td>$D_{CP} D_{CP} \eta'$</td>
</tr>
<tr>
<td>f_0</td>
<td>$\pi^0 \pi^0 f_0$</td>
<td>$\eta \eta f_0$</td>
<td>$\eta' \eta' f_0$</td>
<td>$f_0 f_0 f_0$</td>
<td>$a_0 a_0 f_0$</td>
<td>$K_S K_S f_0$</td>
<td>$K_L K_L f_0$</td>
<td>$D_{CP} D_{CP} f_0$</td>
</tr>
<tr>
<td>a_0</td>
<td>$\pi^0 \pi^0 a_0$</td>
<td>$\eta \eta a_0$</td>
<td>$\eta' \eta' a_0$</td>
<td>$f_0 f_0 a_0$</td>
<td>$a_0 a_0 a_0$</td>
<td>$K_S K_S a_0$</td>
<td>$K_L K_L a_0$</td>
<td>$D_{CP} D_{CP} a_0$</td>
</tr>
<tr>
<td>K_S</td>
<td>$\pi^0 \pi^0 K_S$</td>
<td>ηK_S</td>
<td>$\eta' K_S$</td>
<td>$f_0 f_0 K_S$</td>
<td>$a_0 a_0 K_S$</td>
<td>$K_S K_S K_S$</td>
<td>$K_L K_L K_S$</td>
<td>$D_{CP} D_{CP} K_S$</td>
</tr>
<tr>
<td>K_L</td>
<td>$\pi^0 \pi^0 K_L$</td>
<td>ηK_L</td>
<td>$\eta' K_L$</td>
<td>$f_0 f_0 K_L$</td>
<td>$a_0 a_0 K_L$</td>
<td>$K_S K_S K_L$</td>
<td>$K_L K_L K_L$</td>
<td>$D_{CP} D_{CP} K_L$</td>
</tr>
<tr>
<td>D_{CP}</td>
<td>$\pi^0 \pi^0 D_{CP}$</td>
<td>ηD_{CP}</td>
<td>$\eta' D_{CP}$</td>
<td>$f_0 f_0 D_{CP}$</td>
<td>$a_0 a_0 D_{CP}$</td>
<td>$K_S K_S D_{CP}$</td>
<td>$K_L K_L D_{CP}$</td>
<td></td>
</tr>
<tr>
<td>η_c</td>
<td>$\pi^0 \pi^0 \eta_c$</td>
<td>$\eta \eta_c$</td>
<td>$\eta' \eta_c$</td>
<td>$f_0 f_0 \eta_c$</td>
<td>$a_0 a_0 \eta_c$</td>
<td>$K_S K_S \eta_c$</td>
<td>$K_L K_L \eta_c$</td>
<td></td>
</tr>
<tr>
<td>χ_c</td>
<td>$\pi^0 \pi^0 \chi_c$</td>
<td>$\eta \chi_c$</td>
<td>$\eta' \chi_c$</td>
<td>$f_0 f_0 \chi_c$</td>
<td>$a_0 a_0 \chi_c$</td>
<td>$K_S K_S \chi_c$</td>
<td>$K_L K_L \chi_c$</td>
<td></td>
</tr>
</tbody>
</table>
Comments on $B^0 \rightarrow P^0 P^0 X^0$

- Try to judge which modes are (will be) useful now (at a Super B factory)
- No reliable technique to estimate three-body BFs
- Base estimates of usefulness on measured quantities, where possible
- Measurements of three-body BFs provide useful information about hadronic B decay
\[B^0 \rightarrow K^+_S K^-_S \eta_c \]

- Modes \(B^0 \rightarrow P^0 P^0 (cc) \) probe \(b \rightarrow ccd \) transition with additional \(qq \) production
- Consider product BF's ... not very promising
Aside: $B^0 \rightarrow K_S K_S J/\psi$

- Cleaner signal and higher efficiency for $cc = J/\psi$
- Here, X^0 has spin-1 \rightarrow final state is not a CP eigenstate in general
- $J^P(K_S K_S) = 0^+, 2^+, 4^+, \ldots$
- If 0^+ is dominant, final state is a CP eigenstate
- Higher L states suppressed by centrifugal barrier?
- Can determine from $(K_S K_S)$ helicity distribution
\[B^0 \rightarrow K_S K_S D_{CP} \]

- Can use \(B^0 \rightarrow D_{CP}\pi^0 \) to measure \(\sin(2\varphi_f) \) or probe for (\(R \)-parity violating) new physics
- Same diagrams with \(ss \) production
- Expect smaller (but cleaner) signal than \(B^0 \rightarrow D_{CP}\pi^0 \)
\[B^0 \rightarrow KK D \]

- No observation of \(B \rightarrow K_S K_S D \) yet, but ...
- Numerous similar \(B \rightarrow KK^{(*)} D^{(*)} \) modes observed
- Eg. \(B^- \rightarrow K_SK^-D^0 \)
 - from 29.4/fb

\[\Delta E/\text{GeV} \]
These modes probe $b \rightarrow ccs / b \rightarrow ccd$

Negligible penguin contribution (?)

Tiny efficiency to reconstruct $2 \ast (D \rightarrow D_{CP})$
$B^0 \rightarrow KKK$

- Mode $B^0 \rightarrow (K^+K^-)_{non-\phi}K_S$ already used to probe $b \rightarrow sqq$
 (found to be mainly $CP+$)

- Suggests reasonable BF for $B^0 \rightarrow K_SK_SK_S$

- Indeed observed!
 - from 78/fb
\[B^0 \rightarrow K_s K_s K_s \]

- Clean! No \(u \) quark in final state \(\rightarrow \) tiny tree pollution
- Probes \(b \rightarrow s \) better than \(B^0 \rightarrow (K^+ K^-)_{\text{non-}\varphi} K_s \) or \(B^0 \rightarrow \eta' K_s \)
- Clean! Good signal/background ratio.
- Little (negligible?) \(b \rightarrow c \) background
K_s Vertexing

- To date, Belle has only announced results of time-dependent analyses with tracks that originate from the B vertex ($egs. J/\psi K_s, \pi^+\pi^-, \varphi K_s$)
- BaBar has announced results on $D^{*+}D^-, D^{*+}D^{*-}, K_s\pi^0$
- It is possible to get vertex information from K_s alone, with reasonable efficiency
- High vertex efficiency for $K_sK_sK_s$
\[B^0 \rightarrow K_S K_S K_L \]

- Mode \(B^0 \rightarrow (K^+ K^-)_{\text{non-}\phi} K_S \) found to be mainly \(CP^+ \)
 \((K^+ K^- \text{ has even } L) \)
- Suggests \(B^0 \rightarrow (K_SK_L)_{\text{non-}\phi} K_S \) should be small
- Good news! Use \(\phi \) mass constraint:
 - reduce continuum background
 - remove \(cc \) background
$B^0 \rightarrow \eta'\eta'K_S$

- $B \rightarrow \phi\phi K$ proposed as sensitive to new physics ...
- ... and observed
 - from 78/fb
- $\text{BF}(B \rightarrow \eta' K) > \text{expected}$
- $\text{BF}(B \rightarrow \eta' X_S) > \text{expected}$
\[B^0 \rightarrow \pi^0 \pi^0 K_s, \text{ etc} \]

- \(B^0 \rightarrow \pi^0 K_s \) currently a hot topic
- Add \(\pi \pi \) production \(\rightarrow B^0 \rightarrow \pi^0 \pi^0 K_s \)
- Could also use \(B^0 \rightarrow P^0 Q^0 X^0 \) modes:
 \[B^0 \rightarrow \pi^0 \eta K_s, \quad B^0 \rightarrow \pi^0 \eta' K_s \]
- Note that, \(eg., \) \(B^0 \rightarrow \pi^0 \eta' K_s \) includes \(B^0 \rightarrow \eta' K^{*0} \)
$B^0 \rightarrow K_S K_S \pi^0$

- Time-dependence of $B^0 \rightarrow \pi^0 \pi^0$ probes ϕ_2 in principle
- In practise cannot measure vertex position
- Add ss production $\rightarrow B^0 \rightarrow K_S K_S \pi^0$
- Expect this mode to be rather rare
 possibly enhanced if mediated by $B^0 \rightarrow f_0^0 \pi^0, a_0^0 \pi^0$ (??)
$B^0 \rightarrow \pi^0 \pi^0 \pi^0$

- Example of obtaining useful information without studying time-dependence
- No vertex information available
- BF can give a bound on the contribution of $B^0 \rightarrow \sigma^0 \pi^0$ to $B^0 \rightarrow \pi^+ \pi^- \pi^0$ (affects $B^0 \rightarrow \rho^+ \pi^-$ analysis)
Aside: $B^0 \rightarrow P^0 P^0 \gamma$

- $P^0 P^0 \gamma$ is not a CP eigenstate
- $P^0 P^0$ is a CP eigenstate
- Behaves as $B^0 \rightarrow M^0 \gamma$... a good probe for new physics
- $P^0 P^0$ cannot form 0^+ state \rightarrow suppressed (?)
- Probes $b \rightarrow d \gamma$ vertex
- No $b \rightarrow s \gamma$ background for $B^0 \rightarrow K_s K_s \gamma$
Conclusions

- Final state in $B^0 \rightarrow P^0 Q^0 X^0$ decays is a CP eigenstate (P^0, Q^0, X^0 are spin-0 CP eigenstates)
- Numerous possibilities for time-dependent studies
- Requiring $P^0 = Q^0$ adds useful (?) constraints
- Some modes which cannot be used for time-dependent analyses are still interesting
- $B^0 \rightarrow K_S K_S K_S$ may help solve the $b \rightarrow sqq$ riddle