Computing the 4-Volume of a 4-Sphere An Exercise in Integral Calculus

A. Johnston

The familiar calculus exercise of determining the volume of a sphere of radius R consists of integrating over the volume of a set of infinitesimally thick disks that "make up" the sphere.

Each disk has a volume equal to the product of its area, $\left(\sqrt{R^{2}-x^{2}}\right)^{2}$, and its thickness $d z$, making the volume of the sphere equal to:

$$
\pi \int_{-\boldsymbol{A}}^{R}\left(\sqrt{R^{2}-x^{2}}\right)^{2} d x
$$

or

$$
2 \pi \int_{0}^{R} R^{2}-x^{2} d x
$$

Similarly, to find the 4 -volume of a 4 -sphere, we integrate over the 4 -volume of infinitesimally thick 4 -disks that "make up" the 4-sphere.

The element of integration here is the 4-disk with a 4-volume equal to the product of its volume $\frac{4 \pi}{3}\left(\sqrt{R^{2}-x^{2}}\right)^{3}$ and its thickness $d w$ measured along the fourth spatial dimension.

This integral is:

$$
2\left(\frac{4 \pi}{3}\right) \int_{n}^{R}\left(R^{2}-x^{2}\right)^{\frac{2}{2}} d x
$$

Substituting $z=R \sin \theta, d z=R \cos \theta d \theta$ gives:

$$
\begin{gathered}
R^{4}\left(\frac{8 \pi}{3}\right) \int_{0}^{2}\left(1-\sin ^{2} \theta\right)^{\frac{3}{2}} \cos \theta d \theta \\
\quad=\frac{8 \pi R^{4}}{3} \int_{0}^{2} \cos ^{4} \theta d \theta
\end{gathered}
$$

Using the identity $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$:

$$
\begin{gathered}
=\frac{8 \pi R^{4}}{3} \int_{0}^{2}\left(\frac{1+\cos 2 \theta}{2}\right)^{2} d \theta \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\int_{0}^{2} 1 d \theta+\int_{0}^{2} 2 \cos 2 \theta d \theta+\int_{0}^{2} \cos ^{2} 2 \theta d \theta\right]
\end{gathered}
$$

$$
\begin{gathered}
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\left.\theta\right|_{0} ^{z}+\left.\sin 2 \theta\right|_{0} ^{z}+\int_{0}^{2}\left(\frac{1+\cos 4 \theta}{2}\right) d \theta\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\frac{\pi}{2}+(0-0)+\frac{1}{2}\left[\int_{0}^{2} 1 d \theta+\int_{0}^{2} \cos 4 \theta d \theta\right]\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\frac{\pi}{2}+\frac{1}{2}\left[\left.\theta\right|_{0} ^{2}+\int_{0}^{2} \cos 4 \theta d \theta\right]\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\frac{\pi}{2}+\frac{1}{2}\left[\frac{\pi}{2}+\left.\frac{\sin 4 \theta}{4}\right|_{0} ^{2}\right]\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\frac{\pi}{2}+\frac{1}{2}\left[\frac{\pi}{2}+(0-0)\right]\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right)\left[\frac{\pi}{2}+\frac{\pi}{4}\right] \\
=\frac{8 \pi R^{4}}{3}\left(\frac{1}{4}\right) \\
=\frac{\pi^{2} R^{4}}{2}
\end{gathered}
$$

