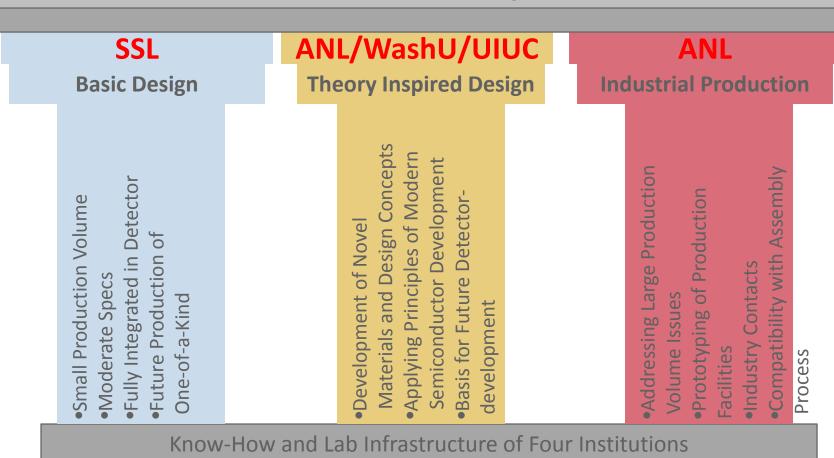


The Photocathode Program of the Large Area Picosecond Photo Detector (LAPPD) Project

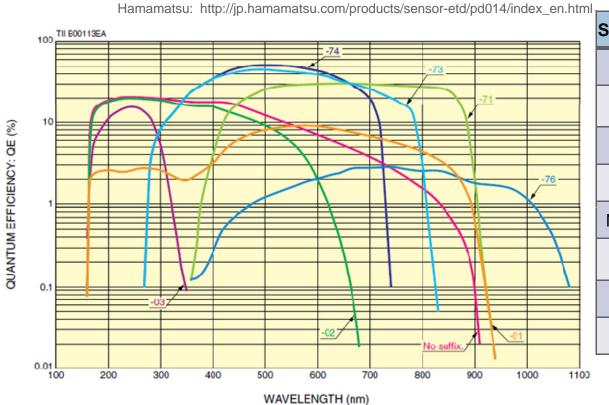
The PC-group (Klaus Attenkofer)

What are the Goals & Milestones:

- Goals: Bridging applied and basic sciences
 - Modern materials sciences approaches to tailor various properties of photocathodes
 - Wavelength response
 - Dark current
 - Timing response
 - Creating (using existing industrial capabilities if possible) appropriate production facilities
 - Proof of principle
 - Evaluating various recipes and approaches and selecting most cost-efficient processes
 - Creating prototype facilities which allows an industrial production (appropriate to the market conditions (~ 40,000 detector units of 8"x8" per year)
 - Understanding cost-quality relation ship (unit price versus QE, dark current.....)
 - Creating new programs which build on expertise and know-how of the collaboration


What are the Goals & Milestones:

- 2010 (end of June)
 - Identify and characterize photo-emission properties of materials for photocathode development.
 - Upgrade existing vacuum transfer facility to match the 8"x8" square module assembly.
 - A design, including costing and interfacing with vendors of production sealed glass tubes, for a vacuum transfer/assembly facility for the 8" square module assembly.
 - Demonstration of an 8"square operational PC.
- 2011 (end of June)
 - Design and costing of a photocathode characterization facility.
 - Design and costing of an 8" glass tile assembly facility.


The Three Pillars of the Project

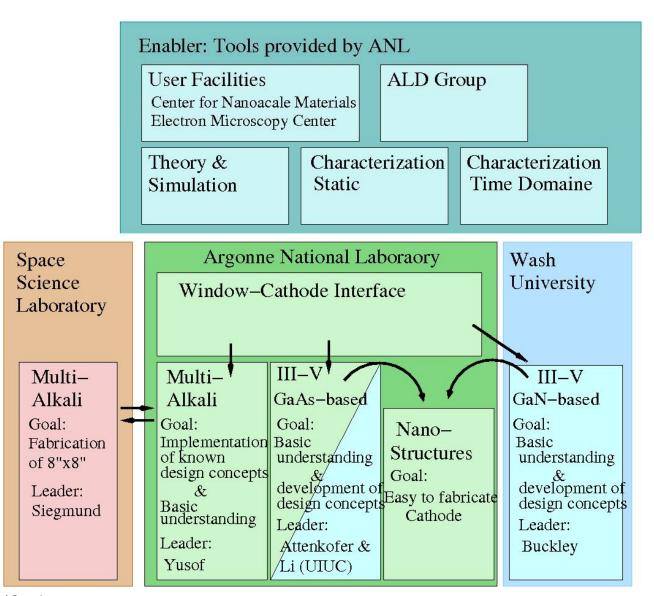
Photocathode Project

The Photocathode Families

I	Suffix	Photocathode	Input Window
	-71	GaAs	Borosilicate Glass
	-73	Enhanced Red GaAsP	Borosilicate Glass
	-74	GaAsP	Borosilicate Glass
	-76	InGaAs	Borosilicate Glass
	Non	Multialkali	Synthetic Silica
	-01	Enhanced Red Multialkali	Synthetic Silica
	-02	Bialkali	Synthetic Silica
	-03	Cs-Te	Synthetic Silica

- Required spectral response still not clear (main application)
- Future applications (combination with scintillators) will require response optimization

Why we had Planed a Large Cathode Effort?


- Multi-Alkali seems to have perfect cathode properties
- But
 - Little understanding
 - Small community
 - No developed Industry
 - Problems with massproduction
- **Existing III-V cathode have** not the right properties
- But
 - **Excellent understanding**
 - Large community
 - Excellent developed Industry
 - Easy mass-production

	Property	Multi-Alkali	GaAs-based	GaN-based
Photocathode	Wavelength	150nm-500nm	450nm-850nm	100nm-350nm
Properties	response			
	(typical)			
	Typical efficiency	20%	20%	30-40%
	Maximum	50%	60%	80%
	efficiency			
	Wavelength	low	large	Very high
	tunability			
	Dark current	~100cps/cm2	~10000cps/cm2	~100cps/cm2
Growth	Single crystal	no	yes	yes
properties	substrate			
	Easy scalable	No	yes	yes
	Large production	No	Yes	Yes
	volume possible			
	Prefabrication	No	Yes	Yes
	possible			
	Temperature	High	Medium	Medium
	sensitive			
	Existing Industry	No (besides	Yes (foundries	Yes (foundries
		night vision /	available)	available)
		small area)		
Basic Physics	Good	No	Yes	Yes
	understanding			
	Microscopic	No	Yes	Yes
	understanding of			
	growth			
	2-D Fabrication	No	Yes	Yes
	tools			
	3-D Fabrication	No	Yes	Some
	tools			
	Theoretical	No	Yes	Yes
	description			
	Band-structure	No	Yes	Yes
	engineering			

The People and Places (details will be presented in the following talks)

- Integration of 4 partners
- Collaboration partners bring:
 - Growth expertise (III-V and multi-alkali)
 - World class growth facilities
 - Standard and unique characterization tools
 - Connection to industry
 - Connection to science community (future funding)
- Unique effort for cathodes
 - Size
 - Completeness (growth, macroscopic and microscopic characterization, theory/simulation)

Godparent Review October 2010: Introduction and Overview

Summary

- Project is based on three pillars:
 - proof of principle & small production volume (SSL)
 - Basic sciences approach to address important issues of PC-production and increase QE, production yield, tune wavelength response, and reduce production costs (mainly ANL)
 - Design and commissioning of large scale production facility (ANL/Fermi)
- Potential PC-materials:
 - M₃Sb (M: K, Na, Cs and mixtures): mainly at SSL (polycrystalline) and ANL (amorphous)
 - Ga(In)N: amorphous growth on glass substrates at WashU
 - GaAs: crystalline growth with transfer and bonding technology at UIUC & ANL
- How does the group work?
 - Weekly teleconferencing meetings (Friday 3:30-chacago time)
 - Strong interaction during collaboration meetings and Godparent reviews (about every 3-4 months)
 - First successful test: investigations of interface effects of MgO (film growth at ANL, functionality test at SSL, optical tests and theory at ANL)
- Who works on this project:
 - SSL: ~3-4 staff
 - ANL: 2 staff (50% +30%); ~4 postdocs; additional 3 staff and 2 postdocs for characterization and theory, 1 student (UIUC)
 - WashU: 2staff

Godparent Review October 2010: Introduction and Overview