Physics 272. Midterm I

Please write your name at the top of the page There are 4 problems. Each is assigned 25 points. Show your work.

Problem 1: 25 points
Three point charges are placed on the x-axis. $q_{1}=-6.0 \mu \mathrm{C}$ is at $x=-3.0$ $\mathrm{m}, q_{2}=4.0 \mu \mathrm{C}$ is at the origin and $q_{3}=-6.0 \mu \mathrm{C}$ is at $x=3.0 \mathrm{~m}$.
(Useful constant: $k=8.99 \times 10^{9} \mathrm{~N} / m^{2} C^{2}$)
(a) Find the magnitude of the force on q_{1}.
(b) What is the magnitude of the electric field at the position of $q_{1} . ?$
(c) What is the direction of the electric field at the position of q_{1}.?

Problem 2: 25 points
An infinitely long cylinder of radius R carries a uniform volume charge density $\rho(r)=\rho_{0}$.
(a) Find the magnitude of the electric field inside the cylinder as a function of radius. (draw a diagram which shows the Gaussian surface used.)
(b) Find the magnitude of the electric field outside the cylinder as a function of radius.
(c) What is the direction of the electric field ? (show it on your diagram)

Problem 3: 25 points
Two concentric spherical shell conductors carry equal and opposite charges. The inner shell has radius a and charge q; the outer shell has radius b and charge $-q$.
(a) Draw a sketch of this configuration.
(b) Find the potential difference between the two shells (i.e. $V_{a}-V_{b}$). (your answer should be given in terms of a, b and q.)
(c) Find the capacitance of this arrangement. (your answer should be given in terms of a, b and q.)

Problem 4: 25 points
(a) Half the charge is removed from a capacitor without changing the capacitance. What fraction of its stored energy is removed along with the charge ?
(b) Two charged metal spheres are connected by a conducting wire and sphere A is larger than sphere B, is the magnitude of the electric potential of sphere A (larger, smaller, or the same) as that of sphere B ? Explain.
(c) Two metal balls have charge $+q$ and $-q$. How will the force on them change if the balls are placed in water, the distance between them being unchanged?
(d) Three charges $+q,+Q,-q$ are placed at the corners of an equilateral triangle as shown. What is the direction of the net force on charge $+q$?
(e) A dielectric with dielectric constant $\kappa=3.0$ is inserted between the plates of a parallel plate capacitor, by what factor does the potential difference and capacitance change ?

