The Nature of the Physical World

1 Introduction

The word “Physics” derives from the Greek word “Phisis”
(¢owa), which means “nature.” I think the Chinese name for
the subject “WU-LI" 474 ], is somewhat more descriptive.
Loosely translated. this means “how things work.” The first
character [% ] means “things” and is used in such everyday
words as “hardware” (metal “things”) and garbage (“things”
to throw away). The second character [ 4 | means logic
and is used in such ordinary words such as cooking (mea-
suring “logic”). I like this word for Physics because it em-
phasizes the fact that we deal with the normal stuff that we
see around us every day. Thus, although physicists study all
sorts of extraordinary things like quarks and quasars, atoms
and astronomy, etc., none of them has ever been to a quasar,
or seen a quark or atom with his or her own eyes. What
we know about these exotic things comes from applying the
laws and experiences that we have accumulated from work-
ing with the ordinary, everyday materials that we can see and
can touch, devising clever ways to use these things to make
instruments that can sense those things that we can’t see of
feel with our own senses, and then applying lots of imagi-
nation. Frequently, the conclusions that are arrived at are
very strange, counterintuitive and fascinating. We find that
a few very simple principles have complex consequences. My
intention in this class is to try to give you a flavor of the rich-
ness and beautiful subtlety of the subject and the awesome
imagination of some of the great thinkers that developed it.

For example, people had seen stars in the heavens since
the very begining of mankind. However, only after the inven-
tion of the telescope—made from ordinary glass and wood—
were people able to see that, in fact, while in most cases
the stars were points of light, there were some “stars” that
appeared through a telescope as diffuse regions of light in
the sky. Around 1755, Immanuel Kant, the famous German
philosopher, speculated that these diffuse regions were giant
clusters of stars. An idea that was not established until early
in this century, when the American astronomer Edwin Hub-
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ble, using an extremely powerful (2.5 m in diameter) tele-
scope at the Mount Wilson Observatory in California, was
able to distinguish the individual stars in these diffuse re-
gions, which we now call galaxies.

Similarly, no one has ever seen an atom with their naked
eye. The ancient Greeks speculated that matter was com-
posed of atoms, but had no real evidence. The atomic pic-
ture that we have today developed as a result of the careful
categorization of the various elements that people found in
nature and the systematic study of the characteristics of light
emitted from various hot gases and from the Sun. Subatomic
particles (such as electrons) have never been seen directly,
their existence was first inferred from looking at the flashes
of light that they produced when they hit a phosphorescent
screen. The fact that we can extrapolate what we learn from
our own limited senses to such enormous extremes is a true
miracle of mankind. The nature of this extrapolation is the
subject of this class.

1.1 Laws of Nature: an early example

As a concrete example of this activity, we will try to repro-
duce what went into one of the first cases where a general law
of nature was inferred from careful observations of rather ev-
eryday phenomena. This was a set of observations first made
by the father of modern science, the Italian genius Galileo
Galilei (1564-1642). Galilei did an experiment where he let
a ball roll down an incline from some vertical height h, and
measured how far it rolled up a connected incline whose angle
relative to the horizontal could be varied.

If the track on the left was perfectly
horizontal, the ball would travel
forever and still not reach its
original height.



What Galilei noticed was that as the angle of the second
incline was made smaller, the ball would travel further. In
fact, what Galilei realized after working with this system of
inclined tracks was that the ball always traveled as far as it
took to get back to the same vertical height (k) from which
it started.

Now a person of ordinary intellect would have been sat-
isfied with this as a general principle that applied to balls
rolling down inclined planes. Galilei, being a genius, had
much deeper insights. He imagined what would happen if
the second incline was exactly horizontal. In that case, the
ball would have to travel an infinite distance and still not
get back to the original height. Thus (if we didn’t have any
friction, and could make the track long enough, and perfect
enough) the ball would continue forever! This was a totally
new idea. No one before had considered that something could
move forever without something pushing it along. (Planets
were kept moving by lots of angels who were continuously
flapping their wings.) This idea was reexpressed by Isaac
Newton (1642-1727) as the Law of Inertia (or Newton’s first
law). In Newton’s words (translated from Latin)

Every body perseveres in its state of rest, or of
uniform motion in a straight hine, unless it is so
compelled to change that state by forces impressed
thereon.

Note that this law makes no mention of balls rolling down
inclined planes at all. Moreover, we now know that this law
is very general: it applies to the smallest subatomic particles
as well as to enormous galaxies billions of light years away.
Galilei and Newton knew nothing of galaxies nor of atoms.
Thanks to the imagination of these exceptional people, ob-
servations and measurements made on a rather prosaic piece
of equipment gave enormous insights into “how things work.”

1.2 Measurement

In order to understand the laws of physics and how to ap-
ply them to various situations, it is necessary to make quan-
titative descriptions of what is going on. As we will see,

Galileo Galilei



only by precise and detailed studies applied in many differ-
ent situations can general laws of Physics be deduced. Often,
the crucial element in an important discovery comes from
the observation of rather small discrepancies in very precise
measurements. Thus, an important element of physics is the
development of a precise system of measurement. Although
in this class we will not go into very much detail about how
measurements are made, we must be aware of some of the
basic items that would be necessary if we were really going
to make these measurements: i.e., coordinate systems and
units.

1.2.1 Coordinate Systems

Suppose, for example, we want to study the motion of base-
balls that are being batted by a baseball player. To do this
with any degree of precision, we must be able to specify the
position of the ball at any time. To make measurements, we
always need some reference points: i.e. places to put the end
of our ruler or to hook the end of our tape measure. These
reference points comprise what we call a coordinate system.
Although there are many possible ways to define coordinate
systems, the most common one is the so-called cartesian sys-
tem, named after the French mathematician René Descartes
(1596-1650). Here, we specify three mutually perpendicular
directions (called axes) and specify the position of the ball
relative to them. The position and orientation of the axes
1s arbitrary and is usually taken to be whatever seems to be
most convenient. For our example, it is simplest to put the
origin of the three axes at home plate, have one axis (let’s
call this the “z-axis”) directed along the first-base line to-
ward right field, another (the “y-axis”) directed along the
third-base line toward left field, and the third axis (the “z-
axis”) pointed straight up in the air.
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We can completely specify the position of any object by
noting its z-coordinate, which is its vertical height above the
ground, and its z- and y-coordinates. For these, imagine that
the field is covered with a piece of graph paper (as in the figure
below). Then the y-coordinate is the number of graph-paper
lines that you cross in going from the z-axis (where y = 0) to
the object—the y-coordinate is the number of graph-paper
lines you cross in going from the y-axis (where z = 0) to the
object. Of course, the field is not really covered with graph
paper; what we really do for the y-coordinate is to measure
the perpendicular distance from the object to the first-base
line (z-axis) using a tape measure or something like that—
the x-coordinate is the perpendicular distance from the object
to the third-base line (y-axis). If either z or vy is negative,
the object is in foul territory; if z is negative, the ball is
under the ground or in a hole. This coordinate system can
be used to specify the position of any object in the stadium
(or anyplace else, for that matter), such as a hot-dog saleman,
a beer spigot at the concession stand, the Moon, the Sun, the
center of our galaxy, etc., etc. etc.

The coordinate system is for our convenience; we can lo-
cate it anywhere, and point the axes anyway we like. For
example, if we choose to put the origin of the three axes (the
point where z = 0, y = 0, and z = 0) at our seat in section
17, row 27, seat 46, we are free to do so. In that case, al-
though the measured values of z, y, and z will be different,
that won’t effect the outcome of the game, or any incident in
the game. If we use either coordinate system to determine
the speed of the pitcher’s fast ball or the total distance that
the ball traveled after it is hit, we get the same result. The
actual motion of the object is not effected by the choice of
location of the coordinate system, only the numbers that we
use to describe it are different.

This latter, rather simple and apparently obvious state-
ment is, in fact, quite profound. We will come across it often
when we discuss the very basic views of nature held by physi-
cists. Here I simply state 1t and trust that it is so obvious to
you that you'll accept it as true.

The motion of an object and the laws of nature
that govern it are not effected by the location or
ortentation of the coordinate system used to de-
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a plane surface is specified
by its x- and y-coordinates.



scribe it.

One of the amazing things about physics is that this simple
and seemingly obvious rule has enormous consequences. Its
validity had to be established experimentally.

1.2.2 Units

To specify the coordinates of an object, say a baseball, we

need a way of expressing our results. For example, to mea-

sure the  coodinate of the object alluded to in the previous

section, we can pace of the distance between it and the third-

base line (the y-axis). This is acceptable, but is of limited

usefulness, because.everyone has a different size foot, and,

thus, our coordinates would depend upon who did the mea-

suring. In the old days there was a simple way around this

problem: everyone used the length of the King’s foot as a

standard. The King would place his foot on a stick and the

Royal Measurer would mark off the front and back and then

saw off the stick at the position of the marks. Then, the Royal

Divider would put marks at 1/2, 1/4,..., etc., of its length,

providing a ruler. The Royal Instrument Company would

then make accurate copies of this and sell them to the king- N

dom’s linoleum and carpet emporia, tailors and dress makers, |4,____ P
and the like. Everyone in the kingdom could use these rulers 9
for their measurements and get consistent results—until the ' o
King died, at which time the old rulers were obsolete and new ' o %
rulers, based on the length of the new King’s (or Queen’s) foot o

had to be produced.

Revolution, the Frenchmen (and Frenchwomen!) did away
with their King, and, thus, needed a more democratic ruler,
or unit of length (an inadvertant pun). What they did was to N
divide the distance from the North Pole to the Equator (via ‘ N /

Paris, of course) into 10,000,000 equal parts. This was defined }

to be the standard of length and was called the “meter,” : e

which is roughly 40 inches long. They took a special metal o

bar and put two fine scratches on the bar that were 1 meter ~ The meter was initially defined

apart, and the distance between the scratches was defined to be 1/10,000,000th of the
distance between the Equator and

the North Pole.

/
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to be the standard unit of length, and all rulers were made
in reference to this standard bar. The meter is the unit of
measure that we will use in this class, although these days the



bar with scratches on it is not a precise enough reference for
our high-tech society. Now the meter (still the same length
as the Frenchmen’s meter) is defined by atomic means.

In this class we will always use meter-based units for length,
or the Metric system. For shorter distances we will use centimeters
(I cm = 1/100th of a meter) and millimeters (1 mm =
1/1000th of a meter). For longer distances, we will use kilometers
(I km = 1000 meters). You may be more familiar with the
“English” system of measurements, which uses inches, feet,
yards, and miles. Although this is a perfectly good system
of measurements to use, it is not very popular outside of the
U.S., and is hardly ever used for scientific quantities. Thus,
the English system is not very convenient for a class like this,
and we will use metric units for everything (although now
and then I may note what something is in English units to
give you a better idea of the magnitude of what we’re talking
about). Below I have made a short table comparing metric
units with English units.

Metric Example English
1 mm thickness of a dime 0.04 in
1 cm radius of a penny 0.4 in

1m nose-to-finger distance 39.4 in
1 km 2.5 Laps on the stadium track 5/8 mi

1.3 Exponential thinking

Consider this sheet of paper. It has dimensions of 22 ¢m by
28 cm and an area of 22 x 28 em? = 616 cm?. Now suppose
I cut it in half, T end up with two 22 by 14 cm sheets, each
with an area of 308 cm?. Now suppose I keep cutting the
remaining sheet of paper in half, every time I cut, the area
goes down by a half, so after twelve cuts, the paper is very
small—its area is

111111111111 2
X=X =X—X—X=—X=-X=-X=-X=-X=X=x616cm* =
2.2 2 2 2 2 2 2 2 2 2 2

With just 12 cuts, which only takes about a minute, the area
of the paper is reduced by a factor of about ﬁ (to be exact,
a factor of ﬁ). If I could cut the paper 60 times, i.e. repeat
the above exercise five times (which would take only about

five minutes if my fingers were small enough), I would have

1
(5)12><616 em? =

616cm? 9
= 0.15em”.

By cutting a piece of paper in
half 12 times, I reduce its area
by a factor of 4096.
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a piece of paper that was 17000,000,000,000,000,000 times the size

of this sheet, which is about the size of a single atom.

Imagine that we reverse the process and somehow keep
increasing this sheet of paper over and over again by a factor
of 2. After 10 times, I'd have a sheet of paper with an area
that is

2X2X2x2X2X2X2x2x2x2x616cm? = 2109%x616cm? = 1024x616em? ~ 630, 000cm?,

an area that is approximately the size of our lecture hall.
(The symbol ~ means approximately equal.) If I doubled
its size 80 times, I would have a sheet of paper with an
area of 1,200,000,000,000,000,000,000,000 times the size
of this sheet of paper, which is about the area enclosed by
the Earth’s orbit around the Sun.

Sample Problem

During this semester you are expected to endure
more than 15 weeks of physics lectures. Suppose
that as an incentive to get through the semester,
you decide to reward yourself with an increasing
number of glasses of beer each weekend: after the
1% week you allow yourself one beer (1 = 2°0),
after the 2"d week two beers (2 = 2!), the 3™
week four beers (4 = 2?), etc. How many beers
will you be entitled to after the 15" week?

Answer:

Continuing the above reasoning, we see that after
the 15'" week, you will be entitled to 2'* beers. To
see how many this is, enter 2 into your calculator,
push the z¥ button, then enter 14 and push the
= button. My calculator tells me that you will be
entitled to 16,384 glasses of beer!

Now in physics, we frequently deal with things much smaller
than atoms and larger than the Solar System. However, small
numbers like 1‘000,000,003'000,000,000 are difficult to imagine,
much less keep track of or deal with; the same can be said for

such enormous numbers like 1,200,000, 000, 000, 000, 000, 000, 000.




1
1,000,000,000,000,000,000 *

plied % by itself 60 times—60 is not such a difficult number
to deal with; and to get 1,200,000, 000, 000, 000,000, 000, 000
we multipled 2 by itself 80 times—80 is not so difficult to
deal with either. Thus, when dealing with very small or very

However, to get the number we multi-

large numbers it is much easier to think in terms of the expo-
nent, rather than the number itself—this is called ezponential
thinking.

1.4 Powers of 10

Usually, since we work with a decimal-based number system,
we do not deal with powers of 2 or 3, and instead use powers
of 10 ar %. Nevertheless, the logic is the same and only
slightly more difficult to imagine than the examples based on

powers of 2 and % given above.

1.4.1 Big things

To illustrate the application of exponential thinking to powers
of 10, I've made a little chart of sizes and distances that you
may have to consider during this semester. (In my chart, the
symbol ~ means “roughly equal,” and implies somewhat less
precision than the ~ symbol.)

From my nose to my finger ~1.0 m

From the front to the back of PSB 217 ~10 m

From PSB to Puck’s Alley ~1000 m
From Manoa to Haleiwa ~50,000 m
Radius of the Earth 6,370,000 m
From the Earth to the Moon 386,000,000 m
From the Earth to the Sun ~150,000,000,000 m

From Earth to the Next Star (Alpha-Centauri) ~40,000,000,000,000,000 m

Here we are only up to the next star, and I'm already
running out of room to write down all of the zeroes that I
need, I'll really be in trouble if I start worrying about re-
ally big distances, such as the distance to the edge of the



Universe. Clearly it would be useful to have a simpler, yet
systematic way of dealing with such large numbers. We do
this by thinking exponentially and keeping track of “powers
of 10.”

To see how this works, consider the following:
10° =1

10! =10
102 =10 x 10 = 100
10 =10 x 10 x 10 = 1,000
10* =10 x 10 x 10 x 10 = 10,000
10° = 10 x 10 x 10 x 10 x 10 = 100, 000
10° =10 x 10 x 10 x 10 x 10 x 10 = 1,000, 000
etc.

For these numbers, the number of zeroes equals the number
of times we have to multiply by 10, i.e., it is the exponent of
10. Thus, for example,

1km = 1000m = 10%m,

5km =5 X lkm =5 x 10°m,

and the radius of the Earth is
6,370,000m = 6.370 x 1,000,000m = 6.37 x 10°m.

To express an ungainly large number in power of 10 notation,
the “power of 10” is just the number of places that you have
shifted the decimal place to the left:

5000. = 5. x 10% i.e., 3 shifts to the left — 3 powers of 10.

The distance to Alpha-Centauri (the star that is closest to
the Sun) is then

e — e
.,
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These guys need to learn about
powers of 10 notation.

40,000, 000, 000, 000, 000.7 = 4.x10'%m 16 shifts — 16 powers of 10.

This notation makes it particularly easy to multiply two
large numbers. Just remember the rule

10% x 10° = 10(e*®)

10



i.e., when you multiple two numbers, just add the exponents.
For example

5,000 x 6,370,000 = 5 x 10% x 6.37 x 105 = 5x6.37 x 10> x 10°

=31.8 x 103%%) = 31.8 x 10° = 3.18 x 10°.

Here, in the last step I shifted the decimal point 1 place to
the left and compensated by adding 1 to the power of 10.

1.4.2 Little things

Below I list the sizes of various small things we might want
to discuss.

Radius of a Penny ~ ﬁm = 0.01 m
Thickness of a Dime ~ ﬁm = 0.001 m
Radius of a Human Hair ~0.000075 m
“Diameter” of a red blood cell ~0.00000002 m
Radius of a Hydrogen Atom ~0.00000000006 m

Radius of a Hydrogen Atom’s Nucleus ~0.000000000000001 m

To deal with numbers less than 1, we first note that

1
0.1=—=10""

10
1 1 1 1
0-01:—2—)(—:—:][}_2
100 10 10 102
1 1 1 1 1
U.[}Olz——-—-:-—-x_._.x__:__zlo—?)
1000 10 10 10 107
etc.

For numbers less than 1, the power of 10 is negative and
equal to the number of shifts that you make to the right. For
example,

5 5

=—=5x10"*
10,000 10t °

0.0005 =

or, more simply

0.0005 = 5 x 10™* 4 shifts — power of 10 = —4
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For multiplying, the same rule holds, just add exponents. But
here you have to be careful of the signs.

5,000. x 0.0005 = 5. x 10> x 5. x 107* = 5. x 5. x 103 x 10™*

=25 x 1081 =25 x 107! = 2.5

Although I will not use very sophisticated mathematics
during this class, the nature of the things that we will discuss
is such that the use of powers-of-10 notation is unavoidable.
Please practice this and develop some degree of familiarity
with it. It is an important skill that will serve you well even
outside of your physics class.

(It is my experience that even the most “non-mathematical”
person has rather good quantitative skills whenever money is
involved. Thus, if you are not comfortable with a certain cal-
culation, put dollar signs in front of one of the numbers and
then proceed. At the end erase the dollar signs.)

Sample Problem

The U.S. Federal deficit is about 5 trillion dollars
(= $5 x 10'2) and the population of the U.S. is
about 250 million (250 x 10 = 2.5 x 10%) people.
What is the amount of debt per person?

Answer:
Simply divide the amount of the debt by the num-
ber of people.

12 -4
85X 10~ _ 85 jpuz—s) = 35 qges

2.5 x 108 2.5 2.5
= $2.0 x 10* = $20,000/person,
the price of a pretty nice new car.

I can do this on my calculator as follows:

e enter 5

push the x button,
e enter 12

push the 10 button
push the = button
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e push the = button
e enter 2.5

e push the = button
e push the = button
e enter 8

e push the 10 button
e push the = button.

(Your calculator may be a little different.)
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