
2. i) A 20 Ampere current flows through each of two, one-meter long parallel wires that are separated by 0.01 m . What is the magnetic force between the wires?

$$
F_{M}=k \frac{I_{1} I_{2} l}{d}=2 \times 10^{-7} \frac{\mathrm{~N}}{\mathrm{~A}^{2}} \frac{(20 \mathrm{~N})(20 \mathrm{k}) \cdot 1 \mathrm{~m}}{0.01 \mathrm{~m}}=8 \times 10^{-3} \mathrm{~N} .
$$

ii) What is the electrical force between two 20 Coulomb charges separated by a distance of 0.01 m ?

$$
F_{c}=k \frac{Q_{1} Q_{2}}{d^{2}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \frac{(20 \mathrm{C})^{2}}{(01 \mathrm{~m})^{2}}=3.6 \times 10^{16} \mathrm{~N}
$$

iii) Which of these two forces is bigger, and by what factor? Electric Force; by a factor $\frac{F_{c}}{F_{\mu}}=4.5 \times 10^{18}$
3. Sketch the magnetic fields produced by
a) a circular loop of current carrying wise and
b) a straight current-carrying wire.

Be sure to indicate the direction of the field, and which part of the field line is in front of the wire and which part is behind.

4. List some differences between gravitational, electrical and magnetic fields.

1) Grave. Field lines Stout at ∞ \& endonmass. B-field lines never End
E-field lines stanton + charge ! end on-chargs
2) B-field lines come out of N -pole $\{$ go into Sol B-field line are produced by electric curets
5. Suppose a magnet is inserted through a loop of wire as shown. Indicate the direction of the induced current in the loop.

6. (You can find a discussion of this problem at www2.hawaii.edu/ \sim plan $/ \mathrm{FPQ} /$)

Io, the innermost large moon of the planet Jupiter, has an orbital period of 42 hours and 8 minutes. This means that every 42 hours and 8 minutes, Io disappears behind (ie. is "eclipsed" by) Jupiter. Astronomers use precise measurements of the time between successive eclipses to determine this orbital period. However, when the Earth is moving towards Jupiter, the light from an eclipses has a shorter distance to travel than the light from the previous eclipse, thereby making measurements of Io's period systematically shorter-the opposite effect occurs when the Earth is moving away from Jupiter. In the late 17 th century, Ole Roomer noticed these differences and used them to infer that light traveled at a finite speed and make the first measurements of that speed. For the following questions you need to know the speed of light: $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; and the speed of the Earth in its orbit around the Sun: $v_{E}=3.1 \times 10^{4} \mathrm{~m} / \mathrm{s}$.
a) How far does the Earth move in its orbit around the Sun during the time between successive eclipses of Io? 42 he $+8 \mathrm{~min}=1.5 \times 10^{5} \mathrm{~s}$

$$
d_{E}=V_{E} t=3.1 \times 10^{4} \mathrm{~m} / \mathrm{s} \times 1.5 \times 10^{5} \mathrm{~s}=4.7 \times 10^{9} \mathrm{~m}
$$

b) How long does it take light to travel this distance?

$$
t_{\text {light }}=\frac{d_{E}}{c}=\frac{4.7 \times 10^{9} \mathrm{~m}}{3 \times 10^{7 \mathrm{~m} / \mathrm{s}}}=15.6 \mathrm{~s}
$$

c) What is the difference in the time observed for successive eclipses of to between the time of year when the Earth is moving directly toward Jupiter and when it is moving directly away from Jupiter?

$$
2 \times 15.65
$$

\qquad Light from the next eclipse has to travel this much farther

