Physics 100 HW 5 (Due 2/14/07)
Name \qquad s.olsen

1. (For this question, use the center of the Earth, which is $6.4 \times 10^{6} \mathrm{~m}$ straight down, as the pivot point.) Suppose you start from rest and then run due east at a speed of $3 \mathrm{~m} / \mathrm{s}$.

a) What is your angular momentum?
$a_{n g}$-mom $=m v 1 R_{E}=80 \mathrm{~kg} \cdot 3 \mathrm{~m} / \mathrm{s} \cdot 6.4 \times 10^{6} \mathrm{~m}=1.5 \times 10^{9} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
b) Angular momentum is conserved. What compensates for your change in angular momentum? The Earth rotates in the opposite direction with equal (but opposite) angular monention
2. A pendulum oscillates back and forth with a frequency of 0.3 Hz . How long does it take it to make 50 full swings?

$$
\begin{aligned}
& T=\text { period }=\text { fi me for } 1 \text { cycle }=\frac{1}{f}=\frac{1}{0.3 \mathrm{~Hz}_{z}}=3.3 \mathrm{~s} \\
& \text { Tine for } 50 \text { swings }=50 T=50 \times 3.3 \mathrm{~s}=165 \mathrm{~s}
\end{aligned}
$$

3. An object oscillates with a motion that is indicated in the graph. What is the
a) Amplitude, $A=2 \mathrm{~m}$
b) Period, and $T=3 s$
c) Frequency
 of this oscillation?

$$
f=\frac{1}{T}=\frac{1}{3 \mathrm{~s}}=0.33 \mathrm{~Hz}
$$

4. The frequency for some of the musical scale starting at middle C are indicated in the accompanying figure. Using a speed of sound in air of $340 \mathrm{~m} / \mathrm{s}$, compute the the wavelengths of the sound notes for the eight notes (do-re-mi-fa-so-la-ti-do).

note	$f\left(H_{t}\right)$	$\lambda=\mathrm{v} / \mathrm{f}$
C	264	1.3 m
D	297	1.1 m
E	330	1.0 m
F	352	0.97 m
G_{T}	396	0.86 m
A	440	0.77 m
B	495	0.69 m
C	528	0.64 m

5. What is the velocity of waves in a 0.5 m long ukulele string that has a fundamental tone of

$$
\begin{aligned}
\lambda=2 L & =2 \times 0.5 \mathrm{~m}=1.0 \mathrm{~m} \\
v=f \lambda & =440 \mathrm{~Hz} \cdot 1 \mathrm{~m} \\
& =440 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

6. In the late-great Johnny Cash's famous song Folsom Prison Blues, he sings:

I hear that train a coming, a rollin round da bend, I ain't had no lovin since I don't know when,...

How do you think he can tell by hearing that the train is going around a turn?

7. When you run, you bend your frey highly sharply at the elbows; it is awkward to run with your arms fully extended, as they usually are when you walking. Why the difference? Natural ting of extended arms approximately matcher the framency that you take steps. When you new, this frequency increases. By shortening your arms, you make the natural fro y of your arms higher.
8. Make a pendulum by hanging a weight from a string that is about 1 meter long.
a) What is its frequency?

$$
f=0.5 \mathrm{~m}
$$

b) You can make the frequency higher by shortening the string. At what length is the frequency twice as high?

$$
L=0.25 \mathrm{~m}
$$

c) What happens to the frequency if you increase the weight?
stays the same

