Supernova Neutrinos

Alexander Friedland
Los Alamos National Lab

Hanohano workshop
Hawaii, March 24, 2007
Acknowledgments

- Evgeny Akhmedov (Munich), Sterling Colgate (LANL), Chris Fryer (LANL), George Fuller (UCSD), Wick Haxton (INT), Thomas Janka (MPI, Garching), Cecilia Lunardini (INT, Seattle), Georg Raffelt (MPI, Munich), Sanjay Reddy (LANL) and Mark Wise (Caltech)

- Several figures borrowed from G. Raffelt
Outlines

- Core-collapse supernova explosions
 - What are they?
 - What might we learn? (i.e., why plan experiments?)
 - Astrophysics of the explosion; nucleosynthesis; neutrino properties (θ_{13}, hierarchy); physics BSM
- A bit more on MSW and the explosion (existing work)
 - Signature of shock passage through resonance
 - Turbulence and neutrino signal: testing the key paradigm
 - Motivation, status of simulations
 - Neutrino evolution in Kolmogorov turbulence
- Implications
What are they?

- **Observational classification**
 - Type I: no H
 - Type Ia: Si
 - Type Ib: He, no Si
 - Type Ic: no He, no Si ...
 - Type II: H

Massive stars undergoing core collapse
Progenitor

- Massive ($M > 8M_\odot$) star burns H, He, C, Ne, O and Si, makes Fe core

<table>
<thead>
<tr>
<th>Table 1 Evolution of a 15-solar-mass star.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>Hydrogen</td>
</tr>
<tr>
<td>Helium</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Neon</td>
</tr>
<tr>
<td>Oxygen</td>
</tr>
<tr>
<td>Silicon</td>
</tr>
<tr>
<td>Iron core</td>
</tr>
</tbody>
</table>

* The pre-supernova star is defined by the time at which the contraction speed anywhere in the iron core reaches 1,000 km s^{-1}.

- Compared to Sun which burns $10^{-1} M_\odot$ in 10^{10} yrs, surface luminosity is 10^4 times larger \(\rightarrow\) will burn though a few M_\odot in **only** 10^7 yrs
- \(\rightarrow\) Occur in stellar-forming regions; diffuse \(\nu\)'s tracks rate of stellar formation
Iron core collapse

- Onion-like shell structure, with dense iron core
 - $\rho \sim 0.8 \times 10^{10} \text{ g/cm}^{-3}$, $T \sim 0.9 \times 10^{10} \text{ K}$, $R \sim 0.9 \times 10^{4} \text{ km}$
 - Electron capture at $\rho > 10^{10} \text{ g/cm}^{-3}$
 - Photodisintegration of iron
- Loss of pressure support, $\sim 1.4 M_{\odot}$ in near free-fall collapse at $v \sim c/4$ to $r \sim 30 \text{ km}$
- At $\rho \sim 4-5 \times 10^{14} \text{ g/cm}^{3}$, bounce of the inner core due to nuclear force, shock formed
- Shock travels through the outer core, looses energy to disintegration of Fe, neutrino emission, stalls in only a few milliseconds
- Material keeps falling in at rate of a few $\times 10^{-1} M_{\odot}$; if continues even for a second \rightarrow black hole
Core collapse supernovae

- We know that somehow shock restarts, blows through the star
 - See explosions
 - See neutron stars
 - Detected neutrinos
 - Many of the elements of nature, including those that form our planet and bodies, made in SN and successfully blown off

For review, see, e.g., Woosley & Janka, Nature Physics 1, 147-154 (2005)
Mechanism?

- **Very rich physics:**
 - Energy transport and deposition by neutrinos
 - Convection (fluid instabilities)
 - Magnetic fields
 - Rotation
 - Nuclear equation of state
 - New particle physics?
 - etc ...
- **No clear single dominant process** -> 40 years of active research

For review, see, e.g., Woosley & Janka, Nature Physics 1, 147-154 (2005)
Present paradigm

from G. Raffelt, in turn from Janka (1993)
Basic energetics

- Gravitational binding energy, $G_N M^2/r \sim 3 \times 10^{53}$ ergs, is 10% of the rest mass.
- This energy is released in neutrinos and antineutrinos of all three active flavors.
- Visible explosion only $1-2 \times 10^{51}$ ergs, $\lesssim 1\%$ of total energy, $\sim 0.01\%$ in photons.
 - (still outshines host galaxy)

- \rightarrow SN is basically a gravity powered neutrino explosion.
- Instantaneously as bright as the rest of the luminous Universe.
- Measuring the total energy in neutrinos is crucial!
What can we learn?

- **Constraints on new physics beyond the SM?**
 - Measure the total energy in neutrinos, see if any missing
- **Example:**
 - Bound on axions

From G. Raffelt
Physics BSM, continued

- Another example: constraining models of extra dimensions (ADD)
 - KK gravitons emitted by $NN \rightarrow NN\phi$
 - Cooling arguments (SN1987a):
 - $\Lambda > 30$ TeV ($n_{\text{extra dim}}=2$)
 - $\Lambda > 3$ TeV ($n_{\text{extra dim}}=3$)
 - Cullen, Perelstein, hep-ph/9904422
 - (Even stronger bounds from neutron star cooling,
 $\Lambda > 1600$ TeV ($n_{\text{extra dim}}=2$))
 - Hannestad, Raffelt, hep-ph/0103201
Robust explosions with new physics?

- New particles with right properties could carry energy from the proto-neutron star to the stalled shock
 - Supernova explosions by axion-like particles
- May even deposit too much energy ;-)
 - ->limits on decaying neutrinos
SN1987a vs future galactic SN

- Bounds currently come from $O(20)$ events from SN1987a. Too few events + uncertainties in the SN models ...
 - important not to overinterpret!
 - Smirnov, Spergel, Bahcall, PRD 49, 1389 (1994) “Is large lepton mixing excluded?” almost ruled out LMA

- Good data from the next SN needed!
 - Super-K 8000 (anti-ν_e p), 300 ($\nu_x^{16}O$), 200 ($\nu_x e^-$)...
 - KamLAND 300, LVD 200, Mini-BOONE 200, Borexino 100...
 - Hanohano \sim 3000 (10 times KamLAND) - comparable to SK

- Estimates for our Galaxy range from 1 to 5 explosions per century
 - Counting progenitors, (1-3)/100 yrs
 - Extrapolating from the local rate, (4-6)/100 yrs
Nuclear equation of state

- Cooling rate depends on assumed nuclear EOS
- \(\rightarrow \) Measure \(\nu \) flux at late times

Pons, Reddy, Prakash, Lattimer, Miralles, astro-ph/9807040
Nucleosynthesis

- It is thought that many heavy elements are made in a core-collapse supernova, in the so-called r-process: Quick absorption of neutrons (faster than β decay).
- The neutrino-driven wind in the hot bubble has high entropy per baryon
- Current best models don’t quite work: neutrons combine into ^4He
- Several solutions proposed:
 - Faster outflow
 - Create even more entropy
 - Change n/p ratio by changing neutrino fluxes (Qian&Fuller)
- Huge subject, see e.g. G. McLaughlin’s talk at neutrino2006 for further details and refs.
Physics of neutrino decoupling

Thermal Equilibrium

\[\overline{\nu}_e p \leftrightarrow n e^+ \]
\[\nu_e n \leftrightarrow p e^- \]

Free streaming

Neutrino sphere (NS)

Scattering Atmosphere

\[\nu N \leftrightarrow N \nu \]
\[\nu e \leftrightarrow e \nu \]
\[N N \leftrightarrow N N \nu \bar{\nu} \]
\[e^+ e^- \leftrightarrow \nu \bar{\nu} \]

Thermal Equilibrium

Energy sphere (ES)

Diffusion

Transport sphere

graphics courtesy of G. Raffelt
Astrophysics of the explosion

- Spherically symmetric 1-d models do not explode
 - Shock never gets revived

Convection to the rescue

- Actual simulations show vigorous turbulence behind the shock front at early times

Snapshot of a 3D simulation at $t=340$ ms by Chris Fryer

Convection essential for the explosion mechanism!

Testing explosion mechanism with ν’s

- It would be great if the neutrino signal could be used to test this key feature of supernova mechanism.
- It can be!
- Late-time signature ($t \gtrsim 3-5$ sec), modification of MSW flavor transformation by the turbulence of the explosion.

“Typical” spectra

- from hep-ph/0412046; after T. Totani, K. Sato, H.E. Dalhed, and J.R. Wilson
MSW effect in SN: original spectra get permuted

- Flavor transformations occur for both ν's and anti-ν's
- Depend on the type of mass hierarchy

- Δm^2_{atm}
- Δm^2_{\odot}
- θ_{13}
- θ_{\odot}

March 24, 2007, U. of Hawaii

Alexander Friedland, LANL
MSW effect in SN: basics

- Flavor transformations for both ν's and anti-ν's
- Depend on the type of mass hierarchy

\[\Delta m^2_{\odot} \]

\[\Delta m^2_{\text{atm}} \]
Flavor transformations in the first few seconds

- Resonance regions at a few $\times 10^9$ cm, a few $\times 10^{10}$ cm, density profile unperturbed by the explosion.
- This means density gradients in progenitor is very smooth, compared to the neutrino osc. length.
- On resonance, $\lambda_{osc} \sim (\Delta m^2/(2E) \sin^2 \theta)^{-1}$
 - 10^1 km for $E_\nu \sim 15$ MeV and atm. Δm^2
 - $\sim 10^{-4}$-10^{-3}
- A few $\times 10^2$ km for $E_\nu \sim 15$ MeV and solar. Δm^2
- $\sim 10^{-4}$-10^{-3}
- The L-resonance is guaranteed adiabatic (parameters known).
- Original anti-ν_e are converted into anti-ν_μ and anti-ν_τ (and vice versa) -> hotter observed spectrum.
Shock reaches the resonant layer

- At 3-5 seconds, shock reaches the H-resonant layer, while neutrinos are still streaming out of the protoneutron star.
- Shock is very steep (photon mean free path) -> transition changes to maximally nonadiabatic.

Schirato & Fuller, astro-ph/0205390
Predicted signatures at Super-K and megaton water-Cherenkov detector

- from Thomas, Kachelrieß, Raffelt, Dighe, Janka and Scheck, JCAP09, 015 (2004)
Let not forget convection!

- Convection developing during the first second creates large density/velocity fluctuations behind the shock.

“Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions”
March 24, 2007, U. of Hawaii
Alexander Friedland, LANL
Turbulent fluctuations persist to later times
Density fluctuations can be important for neutrinos!

- Smooth profile: adiabatic or non-adiabatic

\[\nu_{\tau}' \equiv \nu_\mu \sin \theta_{\text{atm}} + \nu_\tau \cos \theta_{\text{atm}} \]

- In the “noisy” density profile of the turbulence, a third option: at densities near resonant, neutrinos may undergo “flavor depolarization”.
 - Random walk on a sphere in flavor space
 - Effect known for a long time
 - ... many others
Can’t we just apply existing analytical results in the literature?

- No, we can’t!
- Exist analytical treatments of neutrino evolution in “delta-correlated noise” \(\langle \delta n(x) \delta n(y) \rangle = n_0^2 L_0 \delta(x-y) \)
 - Loreti, Qian, Fuller, Balantekin, Phys. Rev. D 52 6664 (1995)
 - ...

Spin precession in turbulent magnetic field treated nicely in Miranda, Rashba, Rez, Valle, Phys.Rev.D70:113002,2004
Kolmogorov theory of turbulence

- Turbulent fluctuations are not described by the delta-correlated noise.
 - Taken literally, delta-correlated noise \(\langle \delta n(x) \delta n(y) \rangle = n_0^2 L_0 \delta(x-y) \) is unphysical.
 - Even if regularized at small scales in an ad hoc way, no way to connect to large-scale features observed in simulations.

- Rather (Kolmogorov)
 \[\delta \rho_\lambda \sim \delta \rho_0 (\lambda/r_0)^\beta, \quad \beta \sim 1/3 \]

- Is turbulence seen in realistic simulations strong enough to affect neutrinos?
Adding noise to a smooth profile

- Start with a smooth adiabatic density profile; add Kolmogorov noise; vary normalization.
- Three regimes are clearly seen:
 - Noise negligible
 - Noise perturbative
 - Complete depolarization

adiabatic
Solution and Kolmogorov spectrum

- **For Kolmogorov turbulence**
 \[C(k) \equiv \int dx \langle \delta n(0) \delta n(x) \rangle e^{-ikx} = C_0 k^{-5/3} \]

 we have

 \[P_{\text{perturb}} \approx \frac{G_F}{\sqrt{2n'_0}} C_0 \left(\frac{\Delta m^2 \sin 2\theta_{13}}{2E} \right)^{-2/3} \times 0.84 \]

- **This means**
 \[
 P \rightarrow \begin{cases}
 P_{\text{perturb}}, & P_{\text{perturb}} \ll 1/2, \gamma \gg 1 \\
 1/2, & P_{\text{perturb}} \gtrsim 1/2, \gamma \gg 1 \\
 1, & \gamma \ll 1
 \end{cases}
 \]

 perturb. noise, adiabatic smooth
 large noise, adiabatic smooth
 nonadiabatic smooth

- See astro-ph/0607244 for details
Implications

- Simulations see order one density variations on large scales $r_0 \to$ use to fix C_0
- The noise amplitude on small scales turns out to be more than enough to insure complete depolarization by turbulence

$$\frac{\delta n_r}{n_r} > 0.1 \, \theta^{1/3}_{13}$$

so long as the oscillation length stays below the scale height of the smooth component in the bubble (i.e. adiabaticity)
Off-resonance depolarization

- Since on resonance the effect is strongly oversaturated, by continuity expect that it becomes important before the density in the turbulence is diluted down to the resonance value

- The depolarization effect
 - starts setting in earlier, possibly at \(~ 3\) seconds
 - Turns on gradually (more so than the shock effect)

- See astro-ph/0607244 for details
The shadow effect

- Turbulence produces 50/50 incoherent mixture of the two states
- Density matrix $\text{diag}(1/2,1/2)$ commutes with any Hamiltonian -> any other features neutrino encounters, before or after turbulence, have no effect
- Sensitivity to front shock lost, replaced by the signal from turbulence

 Fogli, Lisi, Mirizzi, hep-ph/0603033

- Turbulence casts a shadow!
 - If neutrino encounters turbulence at resonant densities and in the absence of the turbulence transition would have been adiabatic, the shadow effect occurs

- At $t \sim 8$ sec the L-resonance also becomes depolarized -> no regeneration in Earth
The shadow effect

- At \(t \sim 8 \text{ sec} \) the L-resonance also becomes depolarized -> no regeneration in Earth

For LMA parameters and SN energies, neutrinos are resonant in the Earth

“Standard” Earth effect from Takahashi, Watanabe, Sato, hep-ph/0012354
(Some) implications

- For neutrino properties:
 - Signal change (lowering of E_{av}, broadening of the spectrum, dip in the # of events) will occur *either* in the neutrino or antineutrino channel, indicating the sign of mass hierarchy
 - Lower bound on θ_{13}, at the level of $\sin^2\theta_{13} \gtrsim 10^{-4}-10^{-3}$.

- For understanding supernova physics
 - Observe the turbulence in the expanding hot bubble behind shock in real time -> confirm the key ingredient of the explosion mechanism
 - Spectrum swapping $\nu_e \leftrightarrow \nu_{\mu,\tau}$ will be incomplete -> be careful in inferring original temperatures
 - Signal may (strongly) depend on the direction!

- Others being worked on... Stay tuned!
Summary

- Measuring neutrino signal from next galactic supernova will
 - Test physics BSM
 - Nuclear EOS
 - Neutrino oscillation parameters
 - θ_{13}, hierarchy
 - Astrophysics of the explosion
 - Convection
 - Neutrino transport and spectra formation
 - ...
 - etc, etc ...

Analytical solution, “noisy” resonance

- First, check if the evolution in the absence of the fluctuations would be adiabatic.
- If not, that means that density change is very abrupt, adding turbulence to it doesn’t change the result.
- \(\rightarrow \) if the adiabaticity parameter

\[
\gamma \equiv \frac{\pi (\Delta m^2 \sin 2\theta_{13}/4E)^2}{G_F|dn_0/dr|/\sqrt{2}} < 1
\]

neutrino evolution is unaffected by the noise.

- Adiabaticity fulfilled for \(\sin^2 \theta_{13} \geq 10^{-4}-10^{-3} \).
Analytical solution, “noisy” resonance II

- If $\gamma \gg 1$, the (perturbative) probability of a transition between mass eigenstates is given by

$$P_{\text{perturb}} \sim \frac{G_F}{\sqrt{2n_0'}} \int dk C(k) G\left(\frac{k}{2\kappa}\right) \quad \kappa \equiv \frac{\Delta m^2}{4E} \sin 2\theta_{13}$$

- Here $C(k)$ is a Fourier transform of the correlation function of the noise

$$C(k) \equiv \int dx \langle \delta n(0) \delta n(x) \rangle e^{-ikx}$$

- and the spectral response function $G(p)$ is given by

$$G(p) \sim \frac{\Theta(p - 1)}{p \sqrt{p^2 - 1}} \quad \text{for} \quad \gamma \gg 1$$
General properties of the solution

- The spectral response function $G(2E \frac{k}{\Delta m^2 \sin 2\theta_{13}})$ is peaked at $k \sim \Delta m^2 \sin 2\theta_{13} / 2E$, up to a factor equals to inverse neutrino oscillation length.

- For fluctuations on longer distance scales, the response is approximately zero (exp. suppressed); those fluctuations are followed adiabatically.

- Contributions of fluctuations on shorter scales are power-law suppressed ($\sim k^{-2}$).

- Previously known analytical result for delta-correlated noise $\langle \delta n(0) \delta n(x) \rangle = n_0^2 L_0 \delta(x)$ is correctly reproduced (in the region of applicability $P \ll 1$).