\qquad

FALL 2003 Midterm Exam \#1, Part A

Exam time limit: 50 minutes. You may use a calculator and both sides of ONE sheet of notes, handwritten only. Closed book; no collaboration. For multiple choice questions, circle the letter of the one best answer (unless more than one answer is asked for). Ignore gravity and relativistic effects in all problems, unless told otherwise.
$k_{\mathrm{e}}=8.988 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad e=1.602 \times 10^{-19} \mathrm{C}$

$$
\begin{aligned}
& m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{p}}=1.673 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

$\varepsilon_{0}=1 / 4 \pi k_{\mathrm{e}}=8.854 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
Score: \qquad
(1 pt . each, unless stated otherwise)

1. An electroscope, like the one shown at right, is initially neutral before a positively-charged rod is brought near its top.
a. What is the net charge on the foil leaves only while a positively-charged rod is held nearby without touching the electroscope's top?
A. positive
B. negative
C. neutral
b. What is the net charge on the foil leaves after the positively-charged rod is touched to the top of the electroscope and then removed?
A. positive
B. negative
C. neutral
c. Which one of the following is normally TRUE for
 an electroscope?
A. Spread-out leaves have net positive charge; leaves together have net negative charge.
B. Spread-out leaves have net negative charge; leaves together have net positive charge.
C. Spread-out leaves have net positive or negative charge; leaves together have net neutral charge.
D. Spread-out leaves have net neutral charge; leaves together have net positive or negative charge.
E. Spread-out leaves have net neutral charge; leaves together are net oppositely-charged leaves.
2. All of the following are TRUE about conductors EXCEPT:
A. Most metals are good conductors.
B. No work is required for charges (usually electrons) to move throughout an ideal conductor.
C. \mathbf{E} (electric field) is always zero inside any conductor.
D. Net charge on a charged conductor always moves to the center of the conductor's interior.
3. An initially uncharged capacitor C is connected in series with a resistor R and a battery V_{0}. At the instant that the circuit is completed $(t=0)$, the capacitor begins to charge.
a. (4 pts.) Which graph best represents how each quantity varies with time as the capacitor charges? (You may use each graph more than once, or not at all.)
\qquad the charge on one capacitor plate \qquad the potential difference across the capacitor
\qquad the current in the circuit \qquad the capacitance of the capacitor

b. (2 pts.) Suppose a different capacitor C_{d} is used in part (a) instead of $C . C_{\mathrm{d}}$ is identical to C in every way except that its dielectric constant κ is 5 times greater than C 's. Which TWO of the following are greater for C_{d} than for C ?
A. the final $(t=\infty)$ charge on each plate
C. the final potential difference across the capacitor
B. the initial $(t=0)$ current in the circuit
D. the final energy stored in the capacitor
4. For a recent demonstration in class, your instructor connected a 30 .-millifarad capacitor to a 6.0 -volt battery. After the capacitor was fully charged, your instructor disconnected the capacitor from the battery.
a. (2 pts.) When fully charged, how much charge was present on each plate of the capacitor?
A. $20 . \mu \mathrm{C}$
B. $38 \mu \mathrm{C}$
C. $420 \mu \mathrm{C}$
D. 9.2 mC
E. 45 mC
F. 180 mC
b. (2 pts.) Then your instructor (unwisely) touched the wire from one side of the capacitor to the other, creating a big spark. How much energy was released in the spark? (Assume that all of the energy stored in the capacitor just prior to the spark was released.)
A. $760 \mu \mathrm{~J}$
B. 8.8 mJ
C. 92 mJ
D. 0.54 J
E. 42 J
F. 1.8 kJ
5. Two unequal point charges, Q_{A} and Q_{B}, are fixed in space. The electrostatic force felt by Q_{A} is exactly 100 N , pointing to the left.
a. What is the electrostatic force on Q_{B} ?
A. 100 N to the left
B. 100 N to the right
C. 100 N , but cannot determine direction from information given
D. to the right, but cannot determine magnitude from information given
E. cannot determine magnitude or direction from information given
b. What is the sign of the charge Q_{B} ?
A. positive
B. negative
C. cannot determine from the information given
c. If both Q_{A} and Q_{B} are doubled in charge, what is the new electrostatic force on Q_{A} ?
A. 141 N
B. 200 N
C. 283 N
D. 400 N
E. 1600 N
F. $10,000 \mathrm{~N}$
d. If INSTEAD of part (c), Q_{A} and Q_{B} are separated to five times their original distance, what is the new electrostatic force on Q_{A} ?
A. 4 N
B. 6.25 N
C. 20 N
D. 25 N
E. 50 N
F. 71 N
6. Two oppositely-charged, parallel plates are located $20 . \mathrm{cm}$ apart. (Assume that the E-field between the plates is ideally uniform - ignore "fringes.") The negatively-charged plate is at a potential of 0 V , while the positive plate is at 3200 V .
a. (2 pts.) What is the electric field strength between the plates? A. zero
D. $8.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$
B. $2.4 \times 10^{2} \mathrm{~N} / \mathrm{C}$
E. $1.6 \times 10^{4} \mathrm{~N} / \mathrm{C}$
C. $3.6 \times 10^{3} \mathrm{~N} / \mathrm{C}$
F. $3.2 \times 10^{4} \mathrm{~N} / \mathrm{C}$
b. The direction of the \mathbf{E} field between the plates is...
A. to the left
D. toward bottom of page
B. to the right
E. into the page
C. toward top of page
F. out of the page
c. (2 pts.) An electron is released from rest, 5.0 cm away from the negative plate. When the electron finally strikes the positive plate, how much kinetic energy does it possess?
A. 800 eV
B. 1.2 keV
C. 1.6 keV
D. 2.4 keV
E. 3.2 keV
F. 3.6 keV
d. (2 pts.) Sketch and label equipotential lines for $\mathbf{8 0 0} \mathrm{V}$, 1600 V , and 2400 V on the diagram at right.

\qquad
Score:
25 pts. possible

FALL 2003 Midterm Exam \#1, Part B

Show your work on all free-response questions. Be sure to use proper units and significant figures in your final answers. Ignore gravity and relativistic effects in all problems, unless told otherwise.

1. Q_{C} and Q_{D} are two point charges, -16.0 nC and +4.0 nC , respectively, fixed 1.0 meter apart. Point P_{1} is located exactly halfway between them.
a. (3 pts.) Sketch E-field lines surrounding the charges below. Include arrowheads to indicate direction.

(8 pts.) You may solve (b) and (c) in whichever order you wish, but show your work clearly
b. Calculate the magnitude and direction of the total E-field at point P_{1}.
c. If an electron were placed at point P_{1}, what would be the magnitude and direction of the electrostatic force on it?
d. (1 pt.) Imagine a line passing through the centers of Q_{C} and Q_{D} and extending outward to either side. Find the ONE position along this line where an electron would feel a net electrostatic force of zero. Do NOT solve for the exact position; just mark its approximate location on the page with a point labeled " $\boldsymbol{P}_{\mathbf{2}}$ ". (Hint: P_{2} is not necessarily located between Q_{C} and Q_{D}.)
2. Household appliances can be represented simply as resistors, all connected in parallel across the same 120.-voltrms AC source when they are all plugged into the same circuit.
a. (2 pts.) Draw a schematic circuit diagram, at
right, of 3 appliances labeled R_{1}, R_{2}, and R_{3}, all connected to the same AC voltage source.
b. (4 pts.) Suppose that the appliances have the following average power consumptions:

$R_{1}:$ halogen lamp	$P_{1}=500 . \mathrm{W}$
$R_{2}:$ fan	$P_{2}=250 . \mathrm{W}$
$R_{3}:$ toaster oven	$P_{3}=1350 \mathrm{~W}$

Calculate the total rms current drawn by all 3 appliances from the voltage source at the same time. (There is a quick way to do this, and a slow way... whichever you choose, show your work clearly.)
c. (1 pt.) Based on what you have learned about household appliances and circuits, would you consider your answer to part (b) to be a safe amount of current? Why or why not?
d. (3 pts.) Which one appliance has the lowest resistance? Show your work/justify your answer.
e. (3 pts.) As accurately as possible, graph what household $60-\mathrm{Hz}, 120$.-volt-rms AC voltage looks like as a function of time. Label the vertical axis numerically with volts [V]. (The heavy tick marks on the horizontal axis are positioned $1 / 120^{\text {th }}$ of a second apart.)

