PSEC4 Timing - Current Data Sample

- Data provided by Eric in December:
 - 10.24 GSa/s
 - 240 MHz sine wave input
 - 20,000 events for CH3
 - 20,000 events for CH5
- Timing calibration with "zero-crossing" analysis.
 - 1. Reorder waveform
 - 2. Pedestal (re-)correction
 - 3. Zero crossings:
 - a) Measure period of waveform (in number of samples) to get average sampling rate.
 - b) Measure occupancy of zero crossings between each sample pair to get Δt for each sampling interval.

Example "raw" event

Sample numbers must be reordered to properly align the waveform in time.

Known "gap" at wraparound point between sample 255 and 0

voltage [V]

voltage [V]

Step 2 – Pedestal (re-)correction

Voltage Profile

Voltage histogram (sample 35)

Data is already pedestal subtracted, but looking at a profile histogram of voltage over all samples, a clear offset is present.

This is calculated and subtracted from each sample event-by-event.

Step 3a – Calculate Average Δt

• Histogram number of cells between periods:

Step 3b - Zero Crossing Occupancy

<u>Corresponding</u> Δt files available for CH3 and CH5.

Still running some cross-checks / residuals with these Δ t values.

