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THE PHYSICS PROCESS

Classical theory of bremsstrahlung from collisions between electrons and neutral molecules

* electron number density and plasma temperature
* Maxwellian distribution of electron velocities
* collision frequency (weak function of electron speed)

but departures from equilibrium conditions make the predictions very uncertain

N,: rotatinal level excitation oxygen Coherence effects can increase significantly the signal
stimulated bremsstrahlung  attachment (Debye length)
= i 1 N,
2 % i 7 E = é,(v) exp(—ik - 551.) total electric field
A | =i
° T ] ) _ 2
2 i T eveﬂc P_Ne Pl
5 20 | -> CO“
= - 1 — — 2
£ i . P/A _ |St0t| _ |E| /ZO
gt ! “coy,
€ - Poynting vector ¢
$ 10 . e “%cg» P=N, P,
S
z i i - 2
oot - Pyulé]
o O | 1 11 | 11 1 | 1 1 Il | 11 1 | 11 1 |

0 2 4 6 8 10
Electron Energy, eV

P.W. Gorham et al..




TEST BEAM A SLAC
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THE AMY OBJECTIVE

Limitations of SLAC measurements

It has been proved only the existence of a microwave emission

* the absolute yield is not known precisely
--> this affect the uncertainty on the threshold in energy of

an air shower detector

* the spectrum in frequency has not been measured
--> 1t may give important information on the underlying process
--> 1f there are bright lines the signal/noise of a telescope can be improved

--> if not, satellite televisions band are preferable to keep low the costs

With the AMY experiment we would like to overcome this limitations
confirming and measuring precisely the absolute microwave yield
and 1ts frequency spectrum in the range between 1 and 25 GHz



THE AMY COLLABORATION

* Roma, Lecce and Aquila
INFN committee V. [ =100 k€

* Martina Bohacova (Czech Republic)

strong experience with Frascati beam
already contributing with funds

* J.Alvarez-Muniz and G.Rodriguez (Santiago)

expertise in radio cherenkov calculation

* Cooperation with Chicago group



The DAFNE Beam Test Facility

control

room

Energy range 25-750 MeV
Max. repetion rate 50 Hz

Pulse duration 1 -10ns

Particles/bunch Up to 101°

In comparison to SLAC the BTF beam provides a larger shower equivalent energy

NSLAO X ESLAC = 1.2 1076_/bllIICh x 28 GeV = 3.36 1017 eV
NBTF X EBTF — 10106_/bUHCh x 700 MeV = (7 1018 eV

Microwave signal higher by a factor 20 +~ 400 (linear or quadrating scaling)



ANECHOIC FARADAY CHAMBER
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* spectrum analyzer -> frequency spectrum and absolute yield

* power detector & FADC (*) ->time evolution of the signal

(*) flexibility of a VME system (beam monitoring)



SPECTRUM MEASUREMENT

Spectrum

— | amplifier ANTENNA
analyzer

Log-periodic
0.85-26.5 GHz

\ R&S HLOS0

OEEE D
CEEE BE

= __—E%é ZVA-213X+
o [ JMini-Circuits
Rohde & Schwarz *
FSV30 . Gy, =25 dB
9 KHz - 30 GHz el =~
40 MHz bandwidth 5
15

0 3000 6000 9000 12000 15000 18000 21000
FREQUENCY (MHz)



TIME MEASUREMENT
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FDWAVE

FDWAVE: installing GHz radio receivers in the empty pixels
of LL telescopes
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FDWAVE

Pixels without photomultipliers (removed to be installed in HEAT ©)
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FDWAVE
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ANTENNA

CTTAETE §

support
connector for (can be removed)
output signal
(can be put in
another position)

QuickTimel and a
decompressor
are needed to see this picture.

circular aperture camera holes b=40 mm

0 42 mm (<a) T waveguide maximum aperture a=45.6 mm
0 24.5mm (<b)

 Half power beam width at 9-11 GHz — 0, = 0.9°-0.7°

* Camera geometry does not allow to lower significantly the frequency (higher

9(I)f)timal frequency — 11 GHz
in Ku band costs of electronics significantly reduced



FE ELECTRONIC & DAQ
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Figure B. Vour and Log Confarmance ws, input Amplitude af 8.0 GHz,
ey = Oipen, Error Caleulated from Puw= -34 dBm to Pu = -T6 d8m

LNB ANTENNA

ERROR [dB]

N\

Low Noise Block
NRJ 2837 Ku-Band PLL

Input freq. 10.95+11.7 GHz
Output freq. 950-1700 MHz
Gain 60 dB
Noise figure 0.8 dB

— a trigger signal is needed
— radio signals will be available in a friendly format
and this makes easier the access for all Auger people



Gain simulated with GRASP Signal to noise (300 K) ratio
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Few tens of events per year above 10'%°eV

Possibility to increase I/Al:  At> 100 ns

averaging over more showers and FADC traces



OUTLOOK

* AMY has been fully funded by INFN and the activities will
start at the beginning of the next year

* we are applying to ASPERA to fund FDWAVE

* further money hopefully will be provided by HEAPNET

* the GHz business can be a good opportunity for next
generation experiments. We hope that the common effort
of the Auger people will assess the feasibility of the experimental
technique in a couple of years.
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