SC communication program manual

Shige Matsuno
University of Hawaii, Manoa

9 May 1994

DIR-8-84

1 Introduction

In this document, details of the DUMAND string controller (SC) communication program will
be discussed. This document mainly concerns the internal structure of the program, namely how
it is organized, how it works, etc. On the usage of this program, one should consult with 2 memo
written by Dennis[1].

This program is meant to control and to monitor all the aspects of the SC. Also, it is meant
to mediate the communication between the modules and the operator and between the SC envi-
ronmental module { SCEM) and the operator. It is designed to be able to communicate with all
the modules in the string simultaneously and relay the response from them to the shore operator.
At the same time, it can communicate with the SCEM, communicate and control the SC digitizer,
and monitor the SC parameters like temperature, electric current, and voltage.

The program down-loading scheme is included in this program so that we can use the different
version of the software for the SC, the SCEM, or the modules if necessary. “Kermit” communication
protocol is used as the standard file transfer protocol.

The shore operator has to use predetermined commands with a command confirmation scheme
to communicate this program. These commands are described in detail in Dennis’s memo[l]. The
commands are rather cryptic, but meant to be used through an interface program which runs on
the shore control computer and supposes to be more user firendly. The modules communicate to
the SC using the similar but different set of commands, which is descried in another memo[2). The
details on the hardware in the SC can be found in the other manual[3][4][5].

This program is written for OS-9 operating system primary using C language. Some I/O related
parts like device driver and the system interface part of the program are written in Assembler
language, to have a better control over the hardware. It is quite possible to use C in the entire
software, but it is decided not to do this because of the lack of sample programs for I/0 and system
interface routines.

2 0S-9

08-9 is an UNIX like operating system for the small computer system([6]. As in the case of UNIX, it
is a multi-user multi-task operating system. But unlike UNIX, this is a real-time operating system,
namely you can use hardware interrupts in the system, though the interrupt handling routine is
usually hidden inside the device driver and not directly accessible from users.

This operating system has been selected to be an universal OS for the entire underwater software
of the DUMAND project. We wanted to use a single operating system for all the underwater
software to avoid their maintenance nightmare. The OS-9 system has been chosen because it is a
real-time operating system, supports higher level languages like C and FORTRAN, and is popular
among the Motorola’s 68k based computer, which was chosen to be used as a control computer for
the modules and the SC.

Many features of this OS have been utilized in the communication program to make the program
development time shorter, to make the resulting program’s memory requirement smaller, and to
go around the certain system limitation. One example of this is the extensive use of the pipe for
the communication between tasks, which consist the actual program.

3 program structure

The communication software consists of three independent tasks. The first one is “comm”, the
second one is “comm_om”, and the third one is “sctimer”. Also there is another task called
“comm _kill* which is designed to terminate “comm” without using its standard i/o port and usually
dormant. These tasks communicate each other using pipes and events, which are some of the inter-
task communication schemes supported by the 0S-9. The details on these tasks are descried below.

3.1 comm

This is the main part of the communication software. It communicates with the shore operator
through the slow laser communication line and handles all the incoming commands and the replies
to the operator. It also spawns other tasks necessary to communicate with the modules and to
initiate time execution routine. This task handles i/o’s to the ADC, DAC, and interface to the
digitizer and monitors the SC’s internal parameter.

All the commands from the shore operator is received, interpreted, and executed by this task.
When it receives a command, it echos back the command and waits for a confirmation from the
operator { “OK”) before actually executing the command. If the module i/o is necessary to execute
the command, module i/o commands are sent to “comm_om” task through the pipe. Reply from
all “comm_om” task initiated by this task is routed through unnamed pipe, received, and relayed
to the shore operator by “comm?”.

Upon receiving the termination command ($KL) from the shore operator, “comm” terminates
all the tasks it initiated, closes all the paths opened, and terminates itself. To kill the forked task
“comm_om”, “comm” will send a character string, “END”, to it. There is another way to kill
“comm”, which is using “comm kill” program. “comm” sets up an event communication scheme
upon its initiation and keeps checking whether the event flag has been set or not whenever it finishes

one command execution or an execution of timer initiated loop. What the “comm kill” program
does is set the appropriate event flag and let “comm” kill itself.

The source list of this “comm” consists of three separate files, comm _inc.c, comm func.c, and
comm.c. The data structures and functions used in this task is listed in section 6.1 and section 6.2,
respectively.

comm_inc.c ; This file contains global variables, definitions, constants, and functions used
throughout the “comm” program. This file also contains I/O intercept function, which gener-
ates software interrupt whenever “comm?” receives a character either from one of i/o paths or from
the pipes.

comm _func.c ; This file contains many functions which will be mainly called from the main rou-
tine or one of the functions in “comm.c”. These function actually execute the individual command
after they are interpreted by the routines in “comm.c”.

comm.c ; This file contains main routine, initial condition setting function, main command
interpreter function, etc. All the command hand shake scheme between the task and the shore

operator and main command assignment routine is included in this file.

3.2 comm_om

This is the task which handles the communication to the modules, through the i/o device driver.
This task is written to deal with four modules which share one module communication/power
board. This task communicates with the main task, “comm”, through the pipes. It will receive
command to be sent to the modules through the named pipe which is specifically assigned to the
individual task and send the module reply back to “comm” through the unnamed pipe, which is
common to all the tasks.

All the command hand shaking scheme between the SC and the modules will be dealt in this
task along with the check for improper reply from the modules. For example, if the module echo
back of a command is not correct, this task will send a special message to “comm” so that it can
send an appropriate error message to the shore operator. Also if the module did not reply within
a certain time, I/O time-out signal will be sent back.

ROM’ed version has only one “comm._om” in it and “comm” initiate the same program seven
times for different module i/o cards. But, this does not mean the same task image file will be
copied to the RAM seven times. OS-9 is clever enough to share the same image file in ROM among
the tasks with separate data buffers for them set up in the RAM.

The source list of this task is contained in a file “comm_om.c”.

3.3 sctimer

This is the timer routine for the “comm” routine. “comm” spawns this routine when its standard
input port is rerouted to unnamed pipe. Whenever this routine outputs something (actually this
is done every second and the output is fixed), they are routed to “comm” through the pipe.
Upon receiving this output of the “sctimer”, “comm” generates a software interrupt and initiate

an execution of timer part of its routine, like processing “D” commands and the error condition
checking.

3.4 comm kill

This is a task which kills “comm” program. It is meant to use through the ship-board modem
communication channel to stop the existing “comm” program. This is necessary because “comm”
will starts up on the main communication port (/term) whenever the SC power is turned on.
To start the program from the different port from /term, one has to stop the program currently
running, first.

4 program feature

4.1 auto program start up

The “comm” program is required to start up automatically upon the SC power up without any
action from the shore operator. Because this is the program we will run in the SC anyway and we
want to make it run even if the communication between the SC and the operator does not work
properly at first. To accomplish this, one has to go into the detail of the operating system and use
the way the system starts up its own shell.

When the system boots up, 0S-9 executes a task named “sysgo” after it finishes all the necessary
system initiation. What this “sysgo” usually does is to keep forking the 08-9 shell so that the
shell is alway running even if one execution of it had been terminated. In the ROM’ed version
of the communication software, this “sysgo” is modified such a way that it will start “comm”
program, before going into the shell forking loop. This special version of “sysgo” is in the file
named “sysgo_scc”.

4.2 data modules

The “comm” uses a few data module to get a list of initial set up commands, get default values for
the modules, and get a list of commands to be executed when there is no command received from
the operator within a certain period of time.

Originally, these information were intended to be stored in plain ASCII files. But in the process
of the ROM’nize the program, it was found that there is no easy way to put the ASCII files in
ROM and make the system recognize them. The former can be done by just merging the ASCII
files with the program, but the later can not. This is the reason why the special data modules have
to be used to let the program receive the information necessary. The structure of this data module
is presented in section 6.1

initlist ; This is the list of the commands which should be executed upon the start up of the
“comm” program. It includes commands to power off all the modules, to set up LED receiver
threshold to a certain value, and to initialize the SC digitizer.

The command which requires to communicate to the module should not be included in this list.
The reason is that the modules are not turned their power on at “comm” start up by default and

the modules require some time before they can properly receive a command even if the module
turning on commands are included in the list.

deflist ; This is the list of the module default values, including the type of the module which
affects the commands “comm _om” can send to the module. For example, one can not send a CM
command unless the module being communicated is listed as a CM in this list.

auntoexec ; This is the list of commands to be executed when there is no command from the
shore operator in predetermined time. This usually include the command to power all the modules
and to set the LED threshold to the proper value. This is another safe guard scheme for the
communication failure. The same kind of arrengement had been implemented into the module
control software(2].

5 other detail

5.1 related program

We had to develop a few other programs to make the program explained above to be usable. One
of them are the “sysgo” described above and others are the device driver necessary to use i/o port.
We have developed module communication and power supply board[5] which uses a UART chip the
08-9 we had did not support. Also, the communication return path to the shore operator is using
the fast laser data structure, which requires the characters to be output to the digitizer board in
paralle] along with usual serial one for the testing. So, we have to modify the existing device driver
for the serial port to be able to handle this.

sc8x50 ; This is the device driver for the Intel’s 8350/8550 UART which is used on the CPU
board as a serial interface chip. This driver has been modified to output the character to the
Boston’s digitizer board in parallel.

uart ; This is the device driver developed for handling the i/o to the modules. It is written
for an UART chip 81C17 made by the Standard Microsystems, with a full support of its interrupt
scheme, baud rate, stop bits, parity, bits per word setting, etc. It can handle the communication
speed from 300 to 9600 baud. But it does not support the baud rate change while the port is in
use, namely one can not change the baud rate once the port has been opened with the current
device driver. One has to change the device descriptor to accomplish this.

In terms of ensuring the continuous communication, module i/o ports usually disable XOn/XOff
communication hand shaking. If they are enabled and the noise faked the XOn signal, the i/o port
will hang up because it will wait for XOff signal before the normal communication can be resumed.

Because we are using only one interrupt line for all the module ifo ports, it is conceivable that
the interrupt from the multiple module overlapped each other. The system’s interrupt handling is
initiated by a rising edge of the interrupt signal line, so the overlapped interrupt will be ignored
and there will be no more interrupt handling thereafter because the interrupt line is always on.
The driver had been incoorporated a logic to force a local interrupt signal line to be low every

the driver’s interrupt handling routine has been executed, thus avoiding the unprocessed interrupt
problem.

6 structures and functions

6.1 data structures

These are the data structures used in “comm” program.

/* data of the tasks for communicating to the modules */

struct tasks { short int pid ; process id of the task
short int pno ; path number of the pipe
char p-name[12] ; pipe name used to communicate to the task
char xio_name[4] } i/o names for this task

/* data for the modules in the string */
struct modules { enum m_type type; module type
unsigned short hv_def, t1_def, t2_def; default values
unsigned short hv_act, tl.act, t2_act ; actual value

unsigned short error, t_out, others ; error counters
unsigned short pd_thr, status } LED threshold and
/* “D” and “A” command data structure /
struct d_str { char comm[4] ; command buffer
unsigned long mmb ; < mmb > buffer
int dt,trep ; time interval
time_t tlastm, tlrep ; last time
float sumn[32] ; data buffer for “A” command
float sumx[32] ; data buffer for “A” command
float sumxx[32] } data buffer for “A” command
/+ structure for the data modules used in “comm” */
struct data mod { struct modhcom _mh ; data module header
long md_offset ; offset of the data
char data } data buffer

8.2 functions

Following is the list of functions used in “comm” program.

- functions in comm_inc.c

type & name function
void wipe(char *) wipe character array with ‘\(’
int comp str(char x,char) string comparison function
void sighand(register int) signal handling (software interrupt)

- functions in comm func.c

type & name

function

void strip_mmb(int,int,int,int,int) strip module modifier bits < mmb > from a command

void recover(int)
int c_status(int)

purge all the characters left in a port
report communication status

void p.m line(int, struct modules *) print out current module setting

int c_default(int)
int ADC_read(int,int)

module default display/edit
read ADC on module comm/power board

int BU_contrl(char,int,long int) BU digitizer control interface

int set.input(long int) set module input enable switch

int set_thr(long int,long int) set LED receiver threshold

int read spy(int *,int %,short int) read spy port (BU digitizer)

int read_phase(short,struct d_str) read phase ADC

void auto_thr{long int) set receiver threshold automatically

void a_thr_2(long int)
int 1 comm(int)

int dig_cont(int)

int chk hb{)

auto_threhold #2
LED receiver control
digitizer control

check clock heart beat

int chk sync() check sync error bit of the digitizer
int read_temp(short struct d_str) read SC temperature

int read_para(short,struct d_str x,short} read parallel port

int read_OM(int,short) OM “R” command handling

int CM_comm (int)
int OM_comm(int}
int d_comm(int,int)
int p_through(int,int)
int default_comm (int)
int power(int,short)
int on_power(int)

int em_ack(int)

int test_oc(int,int)
int down load{int,int)
int d.1.em(int,int)

int suspend{int)

int s kermit(int,int)
int d_chirp(int)

functions in comm.c

type & name
void scc.init()
int sccquit()
int comm_acc()
void comm _exe(int)
void mod_reply(int)

CM command handling

OM command handling

“D” and “A”command handling function
communication pass through mode
default < mmb > handling

module power control

module power on

emergency acknowledgement handling
test module over current

program download to module
program download to SCEM

“comm” suspend command

program download from the shore
chirp file download to SCEM

function
initialize “comm” program
terminate “comm” program
shore communication hand shake
shore command execution
module reply handling

void EM reply() SCEM reply handling
void prexit() print help information and quit

References

[1] D. Nicklaus. “DUMADND Host Computer Status Monitor Software Ezternal Interface Specifi-
cations”

[2) S. Matsuno. “Communication protocol between the §C and the modules”

[3] E. Hazen et. al. “DUMAND string Controller Digitizer System Design Specification” DIR-1-92
[4] D. Orlov “DUMAND Clock Signal Generator”

[5] M. Mignard “SC hardware manual”

[6] Microware Systems Co. “0S-9 Technical Manual” Oct. 1989

