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Introduction

In the SPS (Short Prototype String), the PMT (Photo-Multiplier Tube} rate
resulting from passing muons contributes a minute fraction of total PMT rate
which is dominated by three major contributors: the bioluminescence flashes, the
intrinsic PMT dark current and the K*® rate. Moreover, each major contributor
is many orders of magnitude above the OSP (Q_n-_S,h& Processor) recording limit.
Hence, a condition must be imposed on the incoming data to reduce the random
background without affecting the muon rate. This task is performed by the

trigger processor.

The trigger processor monitors all PMT hits as they arrive aboard ship and
loads each hit into its memory. The trigger processor memory locations represent
a time bin and each PMT hit’s time of arrival word is truncated, then used as an
address to the time bin. The trigger processor continuously decodes the stored
data as newly arriving data is being stored and sends output pulses when an event

1



satisfies a pre-set condition. Each of the 14 outputs from the trigger processor
represents a different condition, and when one these conditions is satisfied, a
pulse is sent out from the associated output. The pre-set conditions used during
the SPS experiment either require the arrival of a designated PMT hit or require

an occurrence of n-fold coincidence.

Each output from the trigger processor is counted by an associated scaler.
The output from each scaler is recorded every second and is classified as the
TYPE2 data. One of the trigger processor outputs is chosen as the recording
device trigger to instruct the data convertor to record the selected data. These
data become what is classified as the TYPE1 data. The TYPE1 data contains the
PMT information that occurred within the time period centered about a trigger
pulse. This data is used to reconstruct the muon’s trajectory. The TYPE2
data contains the statistics of PMT hit occurrences which include the number
of PMT single hits and 160ns (nano-seconds) n-fold coincidences integrated over
a one-second period. A relationship between the PMT singles and n-folds can
be established assuming the observed number of single PMT hits are uniformly

distributed within a one-second integration time.

PMT Hit Generation

The observed number of PMT hits is relative to the PMT’s rate through the

Poisson probability distribution. Therefore, the probability of a PMT producing



exactly M; hits within a infegration time period of r can be described as

At)r)Mie A
M;!

p(a;) =

where A(t) is the PMT hit rate and the observe number of PMT hits M; is a
random sample from this distribution. If A is constant within the integration
time the PMT hits will be uniformly distributed in time. Assuming this is the

case and the product of Ar is large, we have the relationship
At = M; + / M;.

Furthermore, the time uniformity assumption allows us to consider another view
of this system. Instead of estimating the actual PMT rates X, we can choose
to consider the number of ohserved PMT hits {M;) as the number of trials of
detecting PMT hits within a shorter time period (dt < 7) less than the integration

time r. The latter view will be considered in this paper.

Theory

The n-fold coincidence dependence on the single PMT hits may be clearer
through a different representation. Consider the analogy of representing a PMT
hit by a ball and representing the PMT identity by the color of the ball. The
time bins of the trigger processor are represented by cells which can contain a
ball of any color. Using this representation, the solution to the below problem
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can be applied to the expected coincidence rate from a random background in

the trigger processor.

The Problem

If a population of M balls of indistinguishable size are divided into 7 subsets
of distinguishable color (M=m;+m2+m3+ms+ms+mg+my) and then randomly
distributed about N cells, what is the expected number of cells to have k or

greater (where 3 < k& < 7) balls of distinguishable color ?

Solution 1!

Assuming the size of each subset population m; is independent of the other
subsets, each probability distribution of color i deposited in a specific cell can be
calculated separately from the other populations. Each ball can be dealt with
two different ways, either it is deposited in a specific cell or it is not. Since the
fraction of cells outside a specific cell is %, the probability distribution of the

number of balls in a specific cell, which follows Binomial statistics, is

Pj)=C™ (%)j(%i)(ms—j)

where C[" = J,(—:‘_'T), and j is number of balls in a specified cell. Therefore the

probability a specific cell is completely depleted of color 1 is

P(j =0)=((N -1)/N)™
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and

P(j > 0) =1~ ((N - 1)/N)™

is the probability of an occupied cell where j is the number of balls of the same
color. The conditional probability of requiring a (N fold) multiple colored occur-
rence in a specified cell can be constructed using Multinomial statistics. Since
the probability distribution for each color can be different we must sum over all

color combinations.

P(Nfold =3) = ZZ ZP;,J)O (7 > 0)Pe(7 > 0) H Pn(j =0)

h=11i=h+1 k=i+1 m(#h#izk)=1
P(N fold = 4) = Z Z Z Pi(j = 0)Pi(j = 0)Pu(j = 0) H Pum(j > 0)
hA=1i=h+1 k=i+1 m{#hFiEk)=1
6 7
P(Nfold=5)=Y Y  Py(j=0)P(j=0) ]‘[ Pn(j > 0)
h=1i=h+1 m{#h#i)=1

T
P(Nfold =6)= Y Py(j = H Pn(j > 0)

k=1 m(;éh) 1

T
P(Nfold = 7) = [] Pm(j > 0)

m=1

The expect number of cells to have a prescribed event is the number of cells
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N multiplied by the probability of the event.

<N(2 N fold)> =N i P(K)

K=N fold

Sclution 2

Consider the case where the population is without color and each ball is
placed uniformly among N cells one at a time. Using Binomial statistics, as

discussed in the Solution 1, the distribution of the number of balls in a cell is

Pro(J) = O (%)J(¥)w—n

where J is total number of balls in a specified cell.

Out of this sample of J balls, we now consider the case where the balls have
distinguishable color. To determine the probability of observing an exact number
of different colors within a group of J balls we must construct all the possible
arrangements which satisfy this condition and then divide by the total number

of unconditional arrangements.

The 1-fold case occurs when all J balls have the same color. The total number

of single color arrangements is

T
2. CF
1=1
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and has a probability of
T
P =3 T(1)
=1

where

(1) =

w9

In the higher order cases, the calculations begin to get increasingly compli-
cated. Not only do we sum over all possible color combinations, but also all

possible population combinations for each specific color combination.

The 2-fold case occurs when all J balls have exactly 2-different colors. Since
many arrangements are possible, it is easier to view the system when we inves-
tigate a specific case. If we consider the example where J=9, we can then write

all population combinations for a given color combination as shown below,

(a a6 a a a a a a\
a a a a a a a 1
a ¢ ¢ a a a 1 %

a a & a a 1 1 1

where a and i represent a diflerent color and each column represents a different

population combination. Therefore, the total sum of all arrangements is written



as

and has a probability of

where

The 3-fold case occurs when all J balls have exactly 3-different colors. By in-

duction from 2-fold case result, the occurrence of the 3-fold case has & probability

of
J=2 J-1 T 6 5
Py —Z PIED ISt
=1 L=N+41p—=atla=i+l i=1
where
Cm"C C'
I(3) = <N J-L
) = A
The 4-fold case has a probability of
J-3 J-2 - 7 6 5 4
Pi=3% > Z PRI B IMACY
S=1N=5+1 L=N+1qg=p+1p=a+1e=1+1 i=1
where

mi MM, Mp Mq
CS CN—S CL—N CJ—L

P(4) = C.‘;‘f




The 5-fold case has a probability of

J—4 J-3 -2 5 3

H-Y Y Y Y Y Y Y Yy

T=185=T+1 N=5+1L=N+1b=q+1 g=p+1 p=a+1a=i+1 i=1
where
mi Mg My mgq mp
CT CS—T CN—S CL—N CJ-L
M
CJ

T(5) =

The 6-fold case has a probability of

J-5 J-4 J-3 4 i 2

R-Y Y Y Y Y Y Y Y Yy

=1T=U+15=T+1 N=541 L=N+1c=b+1b=g+1 g=p+1 p=a+1 a=i+1 i=1

where
m:; .~ 1m mp My me m.
Co' Criy Cslr Ons Cr2n Cr- g

F(ﬁ) = C.‘?J

And finally the 7-fold case, which is when all 7-different colors are present

among the J balls, has a probability of

-8 J- -4 J-3 -
PT—ZZ Z > Z ZFW
V=1U=V4+1T=U+15=T+1 N=5+1L=N+1

where
m, msz my my s g my
CV CU—V CT—U CS—T CN—SCL——N CJ—L

I(7) = o

We have determined the probability distribution of finding J balls in a given
cell which will be represented as Pyc{J) and then the probability distribution
of finding K different colors from a group of J balls which will be represented as
PI‘{r. Hence probability of finding K different colors in a cell is
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M

P(K =4)= Y Prc(i) P}

M
P(K =5)=3_ Pncli) B
M .
P(K =6)=)_ Pno(i) P;
1—6

M
P(K =T)=)Y_ Pncl(i) P}
=T

And again the expect number of cells to have a prescribed event is the number

of cells N multiplied by the probability of the event.

T
<N(2 Nfotd)> =N Y P(K)

K=Nfold
We have two solutions which represent the relationship between the PMT
singles and n-fold coincidences. Since an analytical comparison of the two so-
lutions is nontrivial to calculate, each solution is compared through analyzing

Monte Carlo data.

Comparison of Solutions using Monte Carlo Data

The two solutions were incorporated into two separate fortran subroutines
which were both called from a common main program. The main program gen-
erated random PMTs counts and passed the same values into each subroutine.
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The subroutines returned their calculated expected number coincidences and
were compared to each other. The resulting data is presented in figures 1,2,3 and
4. The two different solutions are consistent for n-folds ranging from 3-fold to
6-fold. This consistency strengthens our confidence of having an accurate theory

that predicts the expected number of n-fold coincidences.

Trigger Processor Simulation

PMT Single Random Hits

The Trigger Processor simulator begins by generating seven values which
represent the number of observe hits that occurred within the first second from
each of the seven PMTs. The number of observed PMT hits is generated from
fitted curves of the observe single rate distribution measured during the SPS
experiment. The PMT hits are uniformly distributed among 6.25 x 10® bins each
representing a 160ns window. After the distribution is completed, each individual
bin is checked as the counters representing a prescribed condition are updated.
After scanning all time bins, the counters values and the PMT single hits values
are written into a data file. The counters are then cleared and the process is

repeated for the next second.

Muon Events

The probability of an atmospheric muon event within a one-second period at a

11



four kilometer ocean depth is also included among the randomly distributed PMT
single hits. The probability of an event occurring follows Poisson statistics and
the average muon rate is determined from the expected flux angular distribution

integrated over & 30m radius sphere.

The muon trajectories were generated in the same direction as the axis of a
cylinder and uniformly within the cross-sectional area. The radius of the cylinder
is 30m, which is large enough to include the 3-fold events with the standard atten-
uation length curve?. The cylinder could be rotated about an axis perpendicular
to.the cylinder’s axis with the pivot point position at OM4 location, which is the

center of SPS.

The trajectory calculation gives the mean of the number of photo-electrons
(PE) expected at each PMT. The Poisson distribution is used to generate the
number of PEs for the event. If the random Poisson generator produces a zero,
the detector did not observe the Cerenkov light from the passing muon. Moreover,
a 20 percent® hit loss was also included to simulate the observed data-loss of the
SPS. However, if a hit survives both tests, an observed pulse width is generated
for the detector. A mean pulse width from the PMT 1s determined from the mean
number of PEs using the relationship obtained from the PMT calibrations. The
calibrations show that the pulse width distribution is Gaussian and the width is
dependent on the mean. So the pulse width is varied according to calibrations
to generate a sample which is the observed pulse width.
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The observed pulse width is used to slew the mean time of arrival value.
The PMT time resolution calibrations show the time of arrival distribution is
Gaussian and the width is a function of the mean number of PEs, therefore a
Gaussian smearing is also performed on the time of arrival. The delay times of
the underwater fiber optic cables from each OM to the string bottom controller

(SBC) are then added to the associated observed time of arrival.

A random time offset is added to PMT hits to determine the exact time
within the one-second period the muon event occurred. The resulting PMT time
of arrival data are then truncated to established an associated time bin among

the 6.25 x 10°® bins.

Comparison of the N-Fold Theoretical Prediction

with Monte Carlo Data and SPS Data

The calculation assumes the n-fold coincidences are random accidentals, while
the muon events must be accounted as separate constant source. Hence an offset
must be included to account for this effect. Since the probability of a 3-fold or
greater coincidence occurring in a given time bin is small and the number of time
bins are very large, the probability distribution of the n-folds in a one-second

integration period follows Poisson statistics. Therefore,

K;
((R.' + b)T) e~ (Ritd)T

i) = K!
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where R; is the predicted number of n-fold hits per second, K; is the observed
number of n-folds, b is an offset to account for the muon events and T is set at

one second observations.

The Likelihood Function

J
c =[] PKs),

1=1

where J is the number of one-second interval observations, is the product of the
probability for each observation. Each component represents the probability that
the observed number of n-fold hits (K;) is a member of a Poisson distribution
whose mean is set by the expected number of n-folds (( R; + 6)T'). The maximum
of the Likelihood Function in terms of b is determine by minimizing the below

function

£=—log L.

The resulting minimization process provides the most probable value for (by,) the
muon rate. Ignoring the higher order terms in the Likelihood Function near its
maximum, the curvature is related to error in (by,) the muon rate as shown in

the below equation.

J
2 .2 _ 2
iy ~d (1og£[1P(b_ bm))/db .

These approaches were applied in fitting the SPS data at 4km depth and three
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different Monte Carlo data sets. Each Monte Carlo data set was generated under

different conditions,

Monte Carlo Uniform PMT Rates without Muon Events

The first Monte Carlo data set is limited to only uniform random background
hits without muon events. If the prediction theory of n-fold coincidences is cor-
rect, the resulting b fits to this data set should provide values which are consistent
with zero regardless of the n-fold requirement. Figure 5 shows the b fit results
and reconfirms the prediction theory. The errors on the 3-fold are very large
since many 3-fold events are produced even during the minimum PMT single
rates resulting in a large lever-arm near the origin. On the other hand, very few

6-folds occurred producing a small sample of observed successes.

Monte Carlo Uniform PMT Rates with Muon Events

The second Monte Carlo data set is uniform background hits with muon
events. The resulting b values to this data set are proportional to the SPS muon
effective area for each n-fold trigger requirement. Figure 6 indicates the effective
area decreases with increasing n-folds triggers. This effect is due to a decreasing
likelihood of detecting distance muons near the one PE level and an increasing
likelihood of losing a hit in the SPS data loss simulation with a higher n-fold
trigger. Moreover, the chance of a n-fold event straddling two or more time bins
increases with a higher n-fold trigger. The error bars indicate the signal-to-noise
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ratio decreases with decreasing n-folds. It also should be noted that the b value
for the 5-folds is consistent with the 4km 5-fold muon rates? from the SPS fitted

trajectories with a 85% fitiing efficiency correction.

SPS data at dkm

The b fits to the SPS scalar data set is shown in figure 7. The resulting b
values are much larger than one would expect from results shown in figure 6. The
6-fold results are consistent, but the differences increase with decreasing n-folds.
One possibility is that the SPS PMT rates are not uniform within a one-second
observation. This explanation motivated the need to generate Monte Carlo data

with a non-uniform background to determine its effects on our predictions.

Bioluminescence Spikes

The third Monte Carlo data set is uniform background noise with muon hits
and one millisecond noise spikes. The short length of the spikes is unrealistic for
most bioluminescence, but will suffice as a comparison to a uniform distribution.
The origin of the spikes is the result of light sources in the vicinity of the SPS.
The locations of the sources are uniformly distributed within a 5m radius of the
SPS and the distribution density falls off as one over the radius squared from 5m
to 25m. The size of the spike is dependent on the location of the light sources
to account for the one over the radius squared effect, the attenuation effect and
angular sensitivity of the SPS PMT’s. An upper limit of the spike size is included
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to avoid spikes which exceed a factor 25 of the uniform background rate.

As shown in figure 8, this b fit curve for different n-folds is very similar to SPS
data in figure 7. The differences between theses two sets of data is probably due
to the narrow noise spikes and the uncertainty in the bioluminescence population
density distribution used in the Monte Carlo data. However, it demonstrates how
noise spikes can hinder the extraction of the muon rates from the scaler data.
Since the length of the noise spikes are less than integration time of the scaler,

this information is lost and can not be accounted for.

Conclusion

Qur predictions of the SPS accidental trigger rates are correct as long as the
PMT hit rates are uniform within the integration time. Moreover, we are able to
extract the muon events from accidental trigger rates in the Monte Carlo uniform
noise data and the 5-fold muon event rate is consistent with the SPS muon fitted
trajectory rate. However, the SPS muon trajectory rate did not agree with its
trigger scaler rate. The excess accidental trigger rates in the SPS scaler data
suggest the integration time was not short enough since the PMT noise rates

fluctuated within the one-second period.

Even though the SPS was ship suspended and mechanically stimulated most
of the bioluminescence it observed, the bottom moored TTR4® also observed
occasional large noise spikes. Therefore, these large noise spikes should be ob-
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served by the Octagon array. Since a comparison check of the muon rate from
fitted trajectories will be needed, our recommendation is to allow for a smaller
and variable integration time in the Octagon’s data acquisition, which will help

provide consistent results from the scaler data.
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FIGURE CAPTIONS

Figure 1) A comparison of the Multinomial (1) solution and the Combinatorial
(2) solution of the expected number of 160ns time bins which have a 3-fold hits

from seven random PMT counts from Monte Carlo data.

Figure 2} Same as last figure for the the 4-fold case.

Figure 3} Same as last figure for the the 5-fold case.

Figure 4) Same as last figure for the the 6-fold case.

Figure 5) Excess background or offset fit to a Monte Carlo data set is limited
to only uniform random background hits. If the prediction theory of n-fold co-
incidences is correct, the resulting excess background or offset fits to this data
set should provide values which are consistent with zero regardless of the n-fold
requirement. This plot displays the offset fit results and therefore reconfirms
the prediction theory. The errors on the 3-fold are very large since many 3-fold
events are produced even during the minimum PMT single rates resulting in a
large lever-arm near the origin. On the other hand, very few 6-folds occurred
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producing a small sample of observed successes.

Figure 8) The second Monte Carlo data set is uniform background hits with
muon events. The resulting fitted offset values to this data set are proportional
to the SPS muon effective area for each n-fold trigger requirement. This figure
indicates the eflective area decreases with increasing n-folds triggers. This effect
is due to a decreasing likelihood of detecting distance muons near the one pho-
toelectron level and a increasing likelihood of losing a hit in the SPS data loss
simulation with a higher n-fold trigger. Moreover, the chance of a n-fold event
straddling two or more time bins increases with a higher n-fold trigger require-
ment. The error bars indicate the signal-to-noise ratio decreases with decreasing
n-folds. It also should be noted that the offset value for the 5-folds is consistent
with the 4km 5-fold muon rates? from the SPS fitted trajectories with a 85%

fitting efliciency correction.

Figure T) The resulting offset fits to the SPS scalar data set is displayed. The
resulting offset values are much larger than one would expect from results shown
in figure 6. The 6-fold results are consistent, but the differences increase with
decreasing n-folds. One possibility is that the SPS PMT rates are not uniform
within a one-second observation.
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Figure 8) The third Monte Carlo data set is uniform background noise with
muon hits and one millisecond noise spikes. In the simulation, the origin of the
spikes is the result of light sources in the vicinity of the SPS. As shown, this
offset fit curve for different n-folds is very similar to SPS data in figure 7. This
effect demonstrates how noise spikes could have,‘caused elevated offsets in the

SPS data.
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