DUMAND DIR-12-82
F. A, Harris
July 1982

MUON STRING SOFTWARE DOCUMENTATION

This document describes the software system for the Muon String. The
Muon String was designed to detect muons deep in the ocean using photo-
tubes to detect their Cherenkov light. The phototubes along with DC-to-DC
convertors and LED pulsers were placed in glass spheres, Benthos spheres,
to protect them from the great pressure. Five such spheres were connected
to the electronics package, consisting of six hollow aluminum hemi-spheres
mounted on an aluminum plate and containing two CAMAC crates with CAMAC
modules and power supplies. The CAMAC crate controller, an Interface
Standarde IS11, was a smart crate controller containing an LSI 11/02 wmi-
croprocessor, Data transmission was handled by a Computrol DMA Megalink
Controller. The ocean cable connecting the electronics package to the
surface carried both power and signal.

On the surface was a Terak LSI 11/02 microprocessor with another Com-
putrol Megalink, a standard Teleray terminal, a double-dual density floppy
disk drive, an Integral Data Systems 460 printer, and a Tektronix 61] Sto-
rage Scope connected via an AAll D-to-A convertor.

The software system used in the ISl11 (downstairs) included RTLi, the
1511 CAMAC library from Interface Standards, the Computrol communications
system, and a simple controlling structure which guided the LAM and time
driven application routines. On power up, a simple booting routine, which
initialized the Computrol reglisters, was automatically executed (ROM).
Also this routine was entered automatically when the Terak started downlo-
ading. '

The software system used in the Terak included RT11l, & modified ver-
gion of MULTI version 0.5 and the Computrol communication system, which
effectively replaced the Fermilab DA system, used to read CAMAC and write
tape. Here the data is recorded on floppy disks.

The Terak was used to compile and link the 1S11 program, as well as
the upstairs program. In downloading, the Terak core image was copled to
the IS11, along with RTl1l, the interrupt vectors, and drivers. The core
image that was used 1in the Terak to do the downloading was the same as
that used in the ISll.

Although the Muon String was lost at sea, a test system 1is again
being set up with an ISl1 crate controller connected to our Terak.
Therefore our software system will still be used. Also the communications
system is being used by the Homestake Proton Decay Experiment in Utah, and
parts of our software may be useful for still other applications. The
major development here, of course, was the comminications package. Also
modifications were made to MULTI to allow data to be recorded on floppies,
and finally the MULTI GLIB package was altered to allow the use of the
AAll in place of the AAVI1I.

1.0 COMPUTROL COMMUNICATIONS SYSTEM

The Communications System was designed to carry out the communication

between the two microprocessors using the half duplex Computrol Megalink
modems. Normally, the Computrols are put into a receive state, ready to
accept messages, and are only put into a send state when there 18 a mes-
sage to be sent. Types of messages include alarms, commands, requests for

common block transmission, common block transfers, and data.

Since there is always a possibility that both Computrels will try to
send at the same time, a vreply 1is required to indicate successful
transmission, Before a second message can be sent, the reply to the first
must be received., If no reply is received before the time out period is
over, the message 1s automatically retransmitted. Different time out per—
jods are used in the two microprocessors to protect against subsequent
clashes. However messages have a priority scheme, and it is possible for
the receiving computer to send a new message of higher priority rather
than a reply after receiving a message. This is to insure that high pri-
ority messages, like alarms are able to get through in the midet of a high
data rate, for instance.

1.1 Queuveing of messages.
Messages to be sent are queued. This is accomplished by the routine
CPQUE, which adds new messages to be sent to the header block queue.

There is room for 9 general message blocks and one reply message block in
the header block queue, which have the following format:

HEADER BLOCK FORMAT

word in block meaning
1 message priority/message type code
2 number of words of data to send
3 address,offset,alarm code, etc.—

meaning depends on message type
queuveing sequence mumber

status ~ not used

data address or actual data
7-10 possible data

oo

The message priority determines which message will be sent first when more
than one message is in the queue. As mentioned above, a message of higher
priority will be sent before a reply to a lower priority message. The
message type code 1s used for branching when a message is received. The
queueing sequence number 1s used to insure that retransmitted messages are
acted on only once. Word 5 is either an actual data word or the address
of the data. If the data consists of less than 5 words, then the data is
stored directly in the header block. Otherwise, only a pointer is stored
and words 7-10 aren’t used. In the latter scheme, the data might change
between the queueing and the sending of the data. The message type code
conventions and message priorities used are:

MESSAGE TYPE CODES
Message Message Priority Meaning of Word Transfer Direction

Type Code No. three
alarm 1 10 alarm code downstairs to up
reply 3 same as reply code bi directional
message (0 1if ok)

command 4 9 command code bi directional
common-— 5 9 conmon code bi directional
request

test data 10 3 bi directional
data 16 8 downstairs to up
common- 17 9 of fget in bi direectional
transfer

The routine CPQUE is called with:
CALL CPQUE(TCODE,PRIO,NWORDS,SPECIAL,DATA ADDRESS),

where the arguments in order are: the message type code, message priori-
ty, number of words to transmit, special word (meaning depends on message
type), and location of the first data word. In addition, there are a set
of routines that the user may call to handle standard message types:
RDCOM (to request all or part of a common block to be transfered from the
other computer), WRTAIM (to send an alarm message), WRTCMD (to send a com-
mand message), WRTDAT and BUFPTR (to store data in buffer and send it au-
tomatically when the buffer 1is full). Common transfers are a two step
process. First a request is made for a common block transfer; then the
receiving computer queues the sending of the common block. The requesting
computer waits for the transfer to be complete before returning control to
the user., Other I/0 is nowait I/0. The calls for these look like:

CALL RDCOM(COMMON INDEX,ADDRESS OF FIRST WORD,NUMBER OF WORDS)
CALL WRTALM(ALMCODE,ADDRESS OF FIRST WORD,NUMBER OF WORDS)
CALL WRTCMD(COMMAND CODE)

CALL WRTDAT(ADDRESS OF FIRST WORD,NUMBER OF WORDS,EV.TYPE)
POINTER=BUFPTR{NUMBER OF WORDS,EV. TYPE)

The parameters such as common index, almcode, command code, and event type
are integer values to communicate, for instance which command is being
gent. Only one common index (corresponding to the IVAR array) and alarm
code (corresponding to just sending ASCII messages) was used. The event
type is used by MULTI to distinguish between different types of events.
Type 2 events correspond to monitoring events, and type 3 events corres-
pond to muon trigger (CAMAC LAM) eventa. Conventions for the command
codes

COMMAND CODE CONVENTIONS
code meaning

begin run
suspend run
resume rTun

end run

send status
prepare to boot

b BB R FL L T

1.2 Core Routines

The main routine to service the header block queue and to control the
state of the Computrol is CPCNTL. It is not called by the user directly
but is called by CPQUE (only if Computrol in receive mode), INITUP and IN-
ITDN (to put the Computrcls into receive mode at startup), RDCOMP, WRCOMP,
and TIMOUT. RDCOMP and WRCOMP are task completion interrupt routines,
which are given control after receiving or sending a message. TIMOUT is
the timeout routine, If there are messages on the queue, when CPCNIL is
entered, and a reply 1s not being awaited, then the Computrol is set to
write the message. CPCNTL coples the header block from the header block
queue along with the data into the write buffer and and calls CPWRIT to
write the data out. At this time the task completion interrupt 1is also
enabled.

When the message has been sent, the task completion interrupt gives
control to WRCOMP. WRCOMP resets the Computrol, notifies RT11 of an in-
terrupt, makes a .SYNCH request so that it can perform programmed re-
quests. If a general message was written, then the wait for reply flag
(WAITRP) 1s set, so we don’t write any more messages until we receive an
acknowledgement. 1If a reply was written, the reply is removed from the
header block gqueue. In either case, a call is made to CPCNTL to initiate
further usage of the Computrol. If we are waiting for a reply, a mark
time request (.MRKT) is made so TIMOUT will be notified if no reply is re-
ceived before the timeout period is over.

TIMOUT resets the Computrol (putting it into an inactive state) and
calls CPCNTL to initiate the retransmission.

RDCOMP handles the read completion interrupts. When the interrupt
occurs, it resets the Computrol. It then notifies RTL1 of an interrupt
(.INTEN) and makes a .SYNCH request so that it can perform programmed re-
quests., Then the timer request, made by WRCOMP, 1s canceled with a .CMKT
request. Next it determines whether it received a general message or a
reply. If it is a reply to a message that was successfully received, then
it clears the wait for reply flag and the header block (first word). If
not received ok, it clears the wait for reply flag but not the header
block, enabling the retransmission of the message. If a general message
is received then RDCOMP branches depending on the message type to various
service routines (described below). At the end, RDCOMP calls CPCNTL to
initiate further use of the Computrol.

5

Routines called by RDCOMP to service general messages are: ALMRCYV,
CMDRCV, COMRCV, CRQRCV, and DATRCV. These routines handle alarms, com—
mands, common blocks, requests for common blocks, and data, respectively.

The main common block for the core routines is CPCNTR and the control
variables in it are:

CPCNTR COMMON BLOCK

variable meaning

CARFLG set to 1 if Computrol carrier sense on
CPSTAT 0 for reset, 1 for receive, 2 for write
WAITRP indicates that we are waiting for reply
CONMSG flag that message continued-not used

SAVPT pointer to last message written

RPSENT flag indicating that last write was a reply
TIMER number of clock ticks till timout

ERRCNT count of bad writes or reads

WTCOMN walt flag for common block transfer

One should be very careful in changing the core routines so that the pro-
tection bullt into the system is not destroyed.

1.3 Buffers

Each microprocessor has one write and two read buffers, each 256
words long. In addition, the downstairs micro has two 256 word data
buffers, which are effectively write buffers.

Two read buffers are used so that one can be used for incoming mes-
sages while the other 1s being emptyed (written to disk, for instance).
Two data buffers are used for the analogous reason. The filling of the
data buffers is handled by BUFPTR and WRTDAT (which calls BUFPTR). BUFPTR
marks thé buffer as busy, inserts a MULTI header (3 words) into the
buffer, and returns & pointer to where the data is to be written.
Multiple events can be packed into the buffer. If there is insufficient
room for the event, the buffer i1s marked as full (busy is cleared), and a
header corresponding to the full buffer is placed on the header block
write queue, The other buffer 1s then marked as busy, and the MULTI
header is placed in it. The maximum number of words that can be written
is 255-3=252. One word is used for the physical byte count. Note that
events do not span records. BUFPTR is meant to be called by an interrupt
level (LAM) routine, while WRTDAT is designed to be called by the back-
ground monitoring routine. WRTDAT copies the data to be written into the
buffer. The MJILTI header used looks like:

MULTI EVENT HEADER

word meaning
1 byte count
2 event type

3 sequence number

Flags for buffer control are kept in the common CNTBUF:

CNTBUF COMMON BLOCK
word meanipg

RADRSV address of read buffer used
RDFULL{2) vread buffer full flag
DTBUSY(2) data buffer being filled
DTFULL{2) data buffer full

DSEQNO event sequence mmber-3rd header word
NXTWRD pointer to next word in data buffer
QBBLK disk block to write to

2,0 1ISl1 SYSTEM

Upon startup, the ISl1l main program, DNMAIN, calls INITDN to initial-
ize variables, the CAMAC hardware, and the Computrol and sends the message
"DOWNLOADING COMPLETE" to the Terak to indicate successful downloading.
Then it goes into a simple loop where it tests run flags (BEGRUN, RESRUN,
SUSRUN, AND ENDRUN) set by CMDRCV (command receive} to control the state
of the CAMAC hardware and to determine which routines to call. For in-
stance, when BEGRUN is set, it calls RNINIT to do user initializationm,
turns on CAMAC, and then continuously calls DORUN to do user background
monitoring. Branches are made in both RNINIT and DORUN based on the con-
trol wvariable RUNTYP. RUNTYP is set in MULTI (IV9) and controls whether
we are doing CAMAC tests (RUNTYP=1), muon events (RUNTYP=2), waveform di-
gitizer events (RUNTYP=3), or fake test data (RUNTYP=4). The run status
is controlled also by MULTI, f.e, the command BEGIN RUN causes the BEGRUN
flag to be set. The command ENDRUN causes the ENDRUN flag to be set by
CMDRCV, and this flag turns off CAMAC and causes DNMAIN to continue loop-—
ing, waiting for the BEGRUN flag to be set again.

Hardware and software control of the downstairs system by the upsta-
irs 1is accomplished with the use of some of the MULTI IV array variables.
These may be set by the operator in MULTI or have default values assigned
to them. At the beginning of a run, RNINIT requests the transfer of the
IVAR array from the Terak and then proceeds to use these values to control
the RUNTYP, the phototube high voltages, discriminator thresholds, etc.
These are not expected to change during the course of a run. As can be
seen, data taking in the ISll is run oriented as it is in MULTI.

In addition to the background monitoring routines, there are inter—
rupt driven (LAM) routines to handle trigger events., This 1is accomplished
quite easily in the IS11 CAMAC FORTRAN system. The FORTRAN routine MULAM,
for instance, handles muon event triggers.

The software system in the ISll was set up with a skeleton system of
dummy routines so that users could replace the dummy routines with their
routines. User routines could be written in FORTRAN. Names of the rou-
tines called by RNINIT corresponding to RUNTYP from 1 to 4 are CTSINT,
MUINT, WFDINT, and DUMINT. Names of routines called analogously by DORUN
are CAMRUN, MURUN, WRFRUN, and DUMDAT.

A set of simple routines were also supplied to handle CAMAC opera-
tions. (These automatically looped over the two crates.) Examples are
CAMUP, CAMON, CAMOFF, etc. In order to make it easy to change CAMAC crate
assignments, crate and station assignments were made only in one place,
the common CAMCOM. The MULTI system for loading the common blocks (PRE)
is used, so these routines have the PRE extension.

3.0 MULTI

We mostly started with the Version 0.5 routines of MULTI but wused
Version 1.0 copies (heavily edited) of routines like BERUN, ENRUN, RSRUN,
SURUN, etc. The latter are associated with the DA part of RTMULTI, which
we basically discarded for our system. A listing of all routines changed
is given in Appendix A.

The primary change to RTMULTI was to discard the DA portion and re-
place 1t with our own or altered MULTI routines. In the Muon String, the
source of data is the Computrol, not CAMAC directly. Also we wished to
write data on floppy disks, not tape. We use unblocked 10 in order to
save room in memory; this saves about 2.3K.

One command was added: the command "LOAD" to download to the 1ISll
from inside of MULTI. This is very useful. It is very time consuming to
bring in MULTY and load the command files from disk. It is thereful very
degireable to be able to downlead the IS11 without getting out of MULTI.
This is accomplished by writing the Terak/ISLl core image to the disk
(done previously) and then reading it in two disk blocks at a time and
transmitting them to the ISl1l, This much room is available in the
read/write buffers.

Other commands that were altered were DISPLAY (to allow specialized
displays) and CONTINUE (to allow replay of data files off of disk). Data
files on disk are given names like RUNOOO1.DAT. These can be replayed by
setting DATA=QBl and typing CONT ,1, where the 1 is used as the run number
in creating the file name.

To write to disk rather than tape, it was necessary to make many
changes to BERUN and ENRUN also. The events themselves are written to
disk in the routine DATRCV, which is part of the communications system.

The MULTI system is relatively independent of the communications sys-—
tem. Routines that affect MULTI are ALMRCV and DATRCV. The first sets
the flag MEFLG in the common COMCOM to indicate to MULTI that an alamm
message has been received. MJILPOL then calls MESAGE to type the alarm
message. Although it was envisioned that many types of alarm messages
would be sent, only one alarm code 1s used. This causes whatever ASCII
message was sent to be typed. DATRCV writes to disk if LOGGER=YES and
sets flags that data has been received and transfers the data to the MULTI
buffer if MULTI is analyzing data. MILTI can then play with the data as
it likes.

Many of the IVAR array variables are used to control the ISll program
and hardware. Therefore the array 1s written into the begin runm record on

e g '

8

disk (so we could reconstruct the run conditions later) and 1s copled to
the IS11 at begin run time, REPROC and REUSER were altered to place into
the IVAR array initial values and not to clear them then on the RESET com-
mand.

MULTI proved to be a very nice system, The only problem was the
length of time necessary to read MULTI files from the disk.

4.0 DOWNLOADING

One problem that had to be overcome was how to use RTll in the 1ISl1,
which had no disk, The solution used was to download into the ISll the
Terak core image containing the executable image along with the interrupt
vectors and RT11 monitor. Most things in RT11 can be done without access-
ing the disk.

To create the core image and to write this image to disk so that the
image could be downloaded two disk blocks at a time, the program DCOWNLD
was written. This program also asked the user for information so that the
IS11 could be downloaded and tested in a non MULTI enviromment. Routines
called by DOWNLD were PRGSTR (to store the image on the disk), CPINIT (to
initialize the Computrol registers), and CPDOWN (to read two disk blocks
at a time from the disk and send on the Computrcl)., The same routines
were used by the MULTI LOAD command.

The routine to take control in the IS11 at the end of downloading 1is
BOOTDN. It checks that the transmission was ok, fixes some regions of
RTil in the IS11, initializes CAMAC, enables teletype interrupts, and
calls DNMAIN, which is effectively the ISll main program.

Note that the Terak downloading program and the ISl]1 program are one
and the same.

APPENDIX A

Description of Files on Disgk 1.

There are four files on the first floppy. MLINKS.BAT 1is the batch

file used to link our version of MULTI and shows which of the Computrol
System files are linked to MULTI. Although the same system is wused both

upstairs and downstairs, there are some routines that are used in one sys-—
tem and not the other.

MULCOM.TXT contains the MULTI commons. The Computrol system commons
were not integrated into the MULTI system fully, so they do not appear
here.

GLIBFX.OMD contains the GLIB sources that had to be changed to wuse
the AAll D-to-A convertor, which 1is quite different from the Fermilab
AAV1l. These will only be of use to someone with the same problem.

Finally, NWDMND.TXT contains all the MULTI sources that were changed
for the Muon String System. Some of the Changes are necessary for the use
of the Computrel communication system, and some are necessary to write
data on floppy disks rather than tape. Some changes are our "improve-

ments"” to MULTI.

Routines in NWDMND.TXT
module deascription

BERUN This is a modified version 1.0 BERUN. Changes include
opening a disk file (QBL:RNXXXX.DAT) for data, copying IVAR
array into begin run record, clearing IV41-IV50 to be used p
as event counters, and sending a command to begin the
run to the downstalirs computer, Part of the IVAR array
was used to control the downstalrs computer.
CAUSER Altered for additional MULTYI command-Load, which downlecaded
the downstairs computer from inside MULTI.
COUSER Modified so that when in playback mode, the second arg
of the continue command was used to contruct a file name.
This file would then be opened for input. ’
DIHIST Only change is to write date and time on every histogram.
DITEXT Also write time and date on every printout.
DIUSER Altered for specialized muon string displays.
ENRUN Modified version 1.0 ENRUN. Writes endrun record to disk

Description of Files on Disk 1. A-2

EUSERA
EUSERB
IMASTR

IUSER
LOPROC

MESAGE
MULPOL

POPROC
READEV

REPROC
REUSER

RSRUN
STUSER

SURUN

and closes file, if logging, and sends endrun command to
downstairs computer.

No changes.

No changes.

Change: the magnetic tape open has been removed.
Change: Calls INITUP to initialize the Computrol,
Downloads DK:DNLOAD.PRG 2 blocks at a time.

Types out alarm messages from downstairs.

Only change is to call MESAGE if flag set.

Dummy routine.

Small changes from 0.5 version to control deblocking.
Change: Take out clearing of IVAR array.

Specialized to put default values into IVAR array.
Add sending of resume command to downstairs.

Add sending of stop command to downstairs.

Add sending of suspend command to downstairs.

On the second disk are the communications system routines, the
user routines

APPENDIX B

Description of Files on Disk 2.

dummy

for the 1S11 system, and CAMAC calling routines, Listed

here is a brief description of the files.

r’

Description of files

module description
ALMRCV.MAC Routine to take alarm information from read buffer and
give it to MULTI.
ANYONQ.MAC Routine to check for header blocks on header block write Q.
BOOTDN.MAC Handles booting in the IS1l, Sets up Computrol registers
and continues reading 2 blocks at a time until full core
image is received. Then it calls DNMAIN.
BUFPTR.MAC Routine to control blocking of data inte 512 byte data
buffers.
CMDRCV.MAC Routine to service commands from other computer.
COMRCV.MAC Routine to transfer data from read buffer to designated
common block.
CPCNTL.MAC Main controlling routine for reading and writing to
the Computrol. If not waiting for a reply and message
on Q, set to write. Otherwise, set to receive.
CPDOWN.MAC Handles downloading in Terak. Reads image from disk
two blocks at a time and sends them to the ISll.
CPINIT.MAC Routine to set up the Computrol registers.
CPQUE.MAC Routine called to insert header blocks into the
header block write @ buffer. If Computrol in read
state and not waiting for a reply, CPCNTL is called
to send the message.
CPREAD.MAC Routlne to set up the Computrol for reading and set
the read completion interrupt.
CPRSET.MAC Routine to do a DMA reset of the Computrol
CPWRIT.MAC Routine to set up the Computrol, enable the write
completion interrupt, and initiate transmission.
CRQRCV.MAC Routine to handle requests for common blocks. When
request received, it calls CPQUE to send 1it.
DATRCV.MAC Routine to service receiving of data by TERAK.

Data is written to disk if logging and handed to MULTI.

Description
DNMATIN.MAC
FATAL.MAC
GETHI.MAC

HALTIT.MAC
INITDN.MAC

PRGSTR.MAC
RDCOM.MAC

RDCOMP . MAC

STPRIO .MAC
TIMOUT.MAC

WAIT.MAC
WRCOMP .MAC

WRTALM.MAC

WRTCMD JMAC
WRTDAT .MAC

of Files on Disk 2.

Routine to control and operation of the downstairs
(IS11) program. Like main program.

Routine to handle fatal (RT1l) errors in ISll. It
sends message to Terak and prepares for downloading.
Routine to find highest priority message to be written
in the list of header blocks in the write Q.

Fortran calleable routine to execute halt instruction.
Routine to control initialization of IS1l. Called by
DNMAIN,

Routine to write Terak core image to disk for later
downloading.

Routine to request transfer of common block from other
conputer.

Routine to handle read completion interrupts of Computrol.

Fortran calleable routine to set priority low.
Routine to handle no replys after sending writing to

Computrol.

Fortran calleable routine to execute a wait instructiom.

Routine to service write completion interrupts of Com-—
putrol.

Routine to queue alarm message. Used in ISll only.
Routine to queue a command message.

Routine to write data (nom interrupt level) into data

buffer.

The following are CAMAC routines.

CAMBZ .PRE
CAMOFF .PRE

CAMON.PRE
CAMIST.PRE

CAMUP .PRE
DSCRTI.PRE

ENCRTI.PRE
RNINIT.PRE

Most
user

CAMRUN.FOR
CISINT.FOR
DORUN,FOR

DOWNLD.FOR

DUMDAT.FOR
DUMINT.FOR

INITUP.FOR
MUINT.FOR

Routine to do CAMAC BZ in ISll.

Routine to inhibit CAMAC crates and disable interrupts.
Routine to remove crate inhibit and enable interrupts.
Test routine-not important.

CAMAC initialization routine., Called by INITDN.

Routine to disable crate interrupts.

Routine to enable crate interrupts.

Routine to control initialization of ISl1 depending

on run type.

of the following (but not all) are the dummy
routines for the ISll. '

Dummy user routine for runtype 1 (CAMAC tests).
Dummy initialization routine for runtype 1.
Background routine in IS11 to branch by runtype
to CAMRUN, MURUN, WFRUN, or DUMDAT.

Main program (for Terak) to be linked with ISl1l
program. When run in Terak, it coples itself

to disk and downloads to ISll.

Routine to give fake data if runtype is 4.
Initialization routine for runtype 4 (dummy data).

Does initialization for Terak.
Dummy initialization routine for runtype 2.

B-2

Description of Files on Disk 2. B-3

MURUN.FOR Dummy user routine for runtype 2.

USERFH.FOR Debugging routine for simple control and printing.
Not needed in full MULTI system.

WFDINT.FOR Dummy initialization routine for runtype 3.

WFRUN.FOR Dummy user routine for runtype 3.

