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1. Introduction:

It is put forward that the DUMAND detector array could be serviced by a
remotely operated vehicle, R.0.V.. This is not a new proposal (ref. Gundersen
1978) but the state of the art of tetherless vehicles has advanced to a stage
where such a system becomes feasible (ref. Dunbar, 1983). This possibility
has been discussed informally with Dr. J. Craven, Prof. V.Z. Peterson, and Mr.
M. Talkington of N.0.S.C. since December 1982 and a more detailed study of the

concept was the main reason for the writer's visit to Rawaii during January

1985.

2. Present Status of Undersea ROVs.

Characteristics of some typical wunderwater vehicles are illustrated in
fig. 1, on the basis of installed H.P. versus mass. The diameter of the
“point” indicates attainable forward speed. Relatively large manned vehicles,
e.g., 15, 16, 17, 19, 20, 22 are much less responsive than unmanned ROVs,

e.g., 10, 11, 12, and semi-tetherless eg. 21 or tetherless vehicles e.g., 28,
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The rate of increase of numbers of ROVs is illustrated in fig. 2. 3, and

4. Fig. 4 shows that the numbers of ROVs carrying mantpalators continues to

increase, illustrating the trend towards undersea robotics, essential for the

proposed DUMAND application.
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fully automatic cemputer control of

the problems of autonomous vehicle

operation, both necessary factors in the design of a vehicle for DUMAND.
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The numbers of the tetherless

for tethered vehicles,

applications are satisfied at present by tethered ROVs.

of mine neutralization vehicles, MNV,

because af

ROVs

world-wide

is much smaller than that

greater technical difficulties, and defence

A representative list

is given in fig. 8.

List of Tetherless Dnimanresd Sutmorsibles

Vehicle

Built By

ARCS
AUSS
B-1

MU RONER

DEAPHIN

EAVE-EAST

ELIT
EPALILARD
OSR-V

FOBOT 11

SPURY 1

SARY Il

1SE, B.C., Canada
NOSC, San Diego, USA
HUSC, Phode Is., USA

Catregle-Mellon, Univ.
Pittaburgh, USA

e,

1SE, B.C., Canada
Unlv. Kew Hawshire,
Durham, USA

HoSC, San Diego, USA

CNFEX0/CDEY, Trance
QEXD, France
MITSUI, Tokyo, Japan

HIT, Canbrlidge, MHasxe.,
0.5.A.

1]
H.W. Univ, UK

Inat, Ocwanclogy,
Hoscow, USSR

APL, Seattle, USA
APL, Seattle, USA

APL, Sesttle, USA

NRL, Washington DC, USA

A & Frarnce, Dunkergue
Shipysrd, Franoe

Arplication
Urcder 1ce, mapping

Search, identification
Laminar flow studies

Feanibility studies

Subrarine target simulagion

Experimental hydrographic
furveyitg: diesel engine

Structure, pipeline irspection:
feaxibilivy

Structuze, pipeline inrapect)on:
feasibility

Observation & measurement
Seabed photography & topography
Ocsancgraphle resaarch

Erper lmental wehicle

Ressarch vehicle

Ooean ressarch

Cowancxjraphic maasurement
Mid-wmter ressarch
Urcdar-ice survey

Lorg range wearch

Deep ocean module collection
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3. Trends_in Undersea ROV Desigh.

il Towards  special  purpose penerally  larpe.  vehicles  of  modular

constim tion, fo1 offshore platform  cleaning . inspection, and non destructive
testing

b) Towards smaller cheaper systems for inspection and light manipulative
duties.

c) Towards tetherless autonomous AROV systems and advanced intelligent

robotics.

The Heriot-Watt University approach to heading (¢) is illustrated in fig. 8.
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4. AROV Concepts applied to DUMAND

4.1 Inspection



A frec swimming or string  reliant  AROV coold wisually examine the PMT .

and tranemit the video in real time by o low level andulated LED beam to g

nearhy PMT. Ttlumination is required for the TV 50 a compromise is needed

between level of i)llumination. with a4  caoled  tow tight level CCD T.V. . and a

de-sensitised PMT: wusing out-of-phase pulsed illumination and video frame
readout would probably aid the compromise. This is illustrated in fig. 10.

An alternative 1is Jow-scan acoustic video transmission to a seabed

hydrophone, or direct to the surface. Even with bhandwidth reduction
techniques and high data rate acoustics, real-time T.V. transmission would not

be possible, particularly for a seabed to surface link. However, this is
generally the case for AROV operation and it |is enly the unique optical

features of DUMAND that offer possibilities of tetherless operation with real

time viewing for piloting and robotics.

4.2 String Retrieval and Re-deployment

4.2.1 Retrieval

An automatic release mechanism, electrically, acoustically or ROV

commanded, could allow the string to return by free ascent to the surface

(Ref . DUMAND Proposed, Nov. 10, 1982; 3.4, 2,3, p. 107). It is recommended

that the string bottom electronics module should be included in the releasable

package, to aid re-gconnection only 1 optical fibre connection would be

required, compared with 24 string connections. A detachable electrical

connection could also be required.



1 2 2 Re deployment

Ree deployment is much more dJiffioalt It is probably wiser to consider

the re positioning of a string cannister  than to attempl to thread s string

into position.

The cannister could be dropped near to, but outside the array. A custom-

designed AROV could search out the cannister (homing devices, acoustic

navigation, automatic computer control), latch on, release pair of the drop

weight to make the module just-buoyant, tramsport to the correct location,

mechanically latch to bottom weight, make electrical and optical connections,

and retreat.

This operation would require an intelligent (smart) guidance and control

system, with multi-sensor input. The operation would be greatly simplified
with visual feedback, possible in real-time wvia an optical-PMT link, or in

slow-scan via an acoustic link to the surface with a 6 second overall delay,

or to a seabed hydreophone, with a shorter delay.

4.2.3 Other Details

The AROV design should be kept as simple as possible. Murphy's Law: if
it can go wrong it will; O'Toole's Law: Murphy was an optimist. Henry Ford:
“if you don't fit it, it can't go wrong”. Unfortunately, the design of the

AROV cannot avoid the implementation of advanced technology, particularly for

deep ocean applications. However, ruggedness and reliability should dominate

design considerations.
The AROV could be based long term on the seabed, trickle-charged via the

cable from the shore.



During cannister maneuvering, the AROV  could maintain altitude using a
dragged (streamlined) chain for simple  mnpowered negative Ceedback. §if bottom
disturbance of sediment (DUMAND Proposed, Nov. 10, 1982; 3.1. p. 80. 81].

Inductive couplers are poessible for A C. power transmission, for the
string, and also for ARDV battery charging, as {fig. 11 has example. Wipe-

clean optical plug and sockets should be capable of development. even for

meno-mode fibre.
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