Experimental issues for measurements of the time-dependent CPV in $b \to s \gamma$ decays

Super B Factory Workshop, Hawaii April 2005

Wouter Hulsbergen (Maryland)

Outline

- ${}_{igstackip}$ motivation for studying TDCPV in $b
 ightarrow s \gamma$
- experimentally accessible modes
- main experimental issues
- expected sensitivity in a super B factory

Motivation

- standard model: photon in $b \to q\gamma$ is predominantly left-handed
- Atwood, Gronau, Soni (1997): time-dependent CPV in $B^0 \to M^0_{CP} \gamma$ decays is probe for photon polarization

$$B^{0} \longrightarrow M^{0} \gamma_{R}$$

$$\overline{B^{0}} \longrightarrow M^{0} \gamma_{L} \longrightarrow M^{0} \gamma_{R}$$

interference suppressed by $\frac{2m_{q}}{m_{b}}$
in the standard model, neglecting final state effects

$$\beta_{s} \equiv \arg \left[-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}} \right] = \text{small}$$

$$S(B^{0} \rightarrow K^{*0}(\rightarrow K_{s}^{0}\pi^{0})\gamma) = \eta_{CP} \times \sin(2\beta + 2\beta_{s}) \times 2m_{s}/m_{b}$$

$$S(B^{0} \rightarrow \rho^{0}\gamma) = \eta_{CP} \times '0' \times 2m_{d}/m_{b}$$

Atwood, Gershon, Hazumi, Soni (2004):
value of S independent of resonance structure in $B^0 \rightarrow P_1 P_2 \gamma$ \rightarrow can extend analysis to inclusive $B^0 \rightarrow K_s^0 \pi^0 \gamma$

- Grinstein, Grossman, Ligeti, Pirjol (2004):
 - $b
 ightarrow q \gamma g$ contribution not negligible
 - contribution from opposite helicity photon of order 0.1
 - contribution depends on $m_{P_1P_2}$

Which modes do we consider?

The most accessible modes are

mode	$\mathcal{B} imes 10^{6}$	typical efficiency	typical S/B	Ref.
$B^0 o K^*(890)^0 \gamma o K^0 \pi^0 \gamma$	13.4	0.055	1.5	[1,2]
$B^0 ightarrow K_2^st (1430)^0 \gamma ightarrow K^0 \pi^0 \gamma$	2.1	0.05	0.5	
other $B^0 o K^0 \pi^0 \gamma$	0 - 4?	0.05	0.5?	
$B^0 o K^0 \eta \gamma$	9 ± 3	0.01?	0.8	[3]
$B^0 o K^0 \eta^\prime \gamma$	$\sim 10?$	0.01?	0.5?	
$B^0 o K^0 \phi \gamma$	~ 3	0.013	3	[4]
$B^0 o ho^0 \gamma$	~ 1	0.15	0.2?	[5,6]
$B^0 o \omega \gamma$	$\sim 1?$	0.09	0.3?	[5,6]

[1] Belle hep-ex/0503008, [2] Babar hep-ex/0405082, [3] Belle hep-ex/0411065, [4] Belle hep-ex/0309006,

[5] Babar hep-ex/0408034, [6] Belle hep-ex/0408137

Note:

- not all these modes have been seen yet
- efficiencies and S/B not necessarily optimal for CPV measurement

What are the experimental issues?

- small branching fractions
 → need large data samples
- large backgrounds
 - physics background: continuum, other $B o X\gamma$ decays, other B decays
 - machine background? \rightarrow not in this talk
- for the most prominent $b \rightarrow s\gamma$ modes: Δt reconstruction

This talk: concentrate on $B^0
ightarrow K^0_{_S} \pi^0 \gamma$, since that is where we have experience

What do we know about $B^0 \to K \pi \gamma$?

branching fraction and direct CP asymmetry well measured in the self-tagging decays (charged kaon)

	${\cal B}$ to $K\pi$	${\cal B} imes 10^6$	${\cal A}$
$K^{*}(890)^{0}$	1	40.1 ± 2.0	-0.03 ± 0.03
$K^{st}_{2}(1430)^{0}$	0.5	12.4 ± 2.4	-0.08 ± 0.15
$K^{*}(1410)^{0}$	> 0.4	< 130	
N.R. ($1.25 < m_X < 1.6$)		< 2.6	

 ${}_{ }$ contributions to $B^0 \to K \pi \gamma$ from

• note I: results for $K^*(1410)^0$ and N.R. obtained by Belle on only 29.4/fb

 \rightarrow more experimental input will help to understand how much statistics there actually is

note II: signal-to-background-ratio depends on $m_{K\pi}$

 \rightarrow this is of some relevance for systematic uncertainties

$K\pi$ invariant mass distribution

2.2

1.8

Δt reconstruction for $B^0 o K^0_{_S} \pi^0 \gamma$

 π

 B_{CP}

 K_s^0

 B_{ta}

Challenging vertexing problem:

- Δt requires z position of B_{CP}
- no charged tracks from B vertex! $\rightarrow K_s^0$ provides single 'trajectory'

Can we reconstruct the *B* vertex with only one trajectory?

 $\Upsilon(4S)$

 π^+

 π^0

Δt reconstruction for $B^0 o K^0_{_S} \pi^0 \gamma$

Challenging vertexing problem:

- Δt requires z position of B_{CP}
- no charged tracks from B vertex! $\rightarrow K_s^0 \text{ provides single 'trajectory'}$

 $\begin{array}{c} \pi \\ K_{S}^{0} \\ B_{CP} \\ \cdots \\ \gamma \end{array}$

 $B_{\mathrm{t}i}$

Solution (BABAR 2003)

- exploit small B lifetime + large boost \rightarrow small transverse motion
- intersect K_s^0 with beam trajectory
 - size and position of interaction region (IR) known
 - increase size to account for transverse motion of B_{CP}

 $\Upsilon(4S)$

- intersect K_s^0 trajectory and IR in transverse plane
- resolution not much worse than for 'normal' decays, because tagvertex 'dominates' uncertainty

Δt reconstruction for $B^0 o K^0_{_S} \pi^0 \gamma$

 π

 B_{CP}

 K_s^0

 B_{ta}

Challenging vertexing problem:

- Δt requires z position of B_{CP}
- no charged tracks from B vertex! $\rightarrow K_s^0$ provides single 'trajectory'

New development in 2004

• 'beam-constraint' on B decay vertex does not really account from transverse motion \rightarrow leads to small bias in Δt scale

 $\Upsilon(4S)$

- used new vertexing algorithm (arxiv:physics/0503091) to apply constraint to *B production* vertex instead
- Δt now extracted from vertex fit to complete $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ decay tree \rightarrow requires sum-of-B-lifetime constraint to retain accuracy of old method Remaining systematic uncertainty from vertex technique is small

 π^+

 π^0

Vertexing inefficiency

Vertexing inefficiency

Events with $\sigma(\Delta t) > 2.5$ ps are not used for time-dependent fits

Fraction of usable events depends on K_s^0 momentum spectrum:

Δt resolution

Loss in sensitivity due to loss in vertexing resolution:

- ho ~ 15 % from 'vertexing efficiency'
- ho ~ 20 % from resolution effect

SVT geometry

Babar and Belle vertex detectors

	Belle SVD1	Belle SVD2	BABAR SVT
outer radius [cm]	6.0	8.8	14.2
inner radius [cm]	3.0	2.0	3.2
beam pipe [cm]	2.0	1.5	2.8
'vertexing efficiency'	0.41	0.55	0.72

Size matters!

need precision tracking up to large distances

Backgrounds

Background sources

- combinatorial background from the continuum
- $B \to X\gamma$ background, for example $B^+ \to K^0_s \pi^+ \gamma$ \to real photon, but soft/fake π^0 from the other B
- - ightarrow photon background from hard π^0 or η
 - ightarrow partially removed with explicit π^0/η vetoes

Estimated composition of data sample per 1/ab, using current BABAR selection:

	$0.8 < m_{K\pi} < 1.0$		$1.1 < m_{K\pi} < 1.8$	
	fit region	signal region	fi t region	signal region
signal	840	650	300 (?)	190
continuum	6200	230	12000	$\boldsymbol{420}$
$B\overline{B}$ background	200	40	800	120

Fit region: $m_{\rm ES} > 5.2, -0.25 < \Delta E < 0.25$. Signal box: $m_{\rm ES} > 5.27, -0.2 < \Delta E < 0.1, L_2/L_0 < 0.4$

 \Rightarrow There is a substantial background from other B decays

Fitting for background composition

BABAR data + fi t for $B^0 o K^{*0} \gamma$

Compare fitted $B\overline{B}$ yield to expectation (BABAR, Moriond 2005):

	$K^*(890)$ region	above the $K^{st}(890)$
	$0.8 < m_{K^0_S \pi^0} < 1.0$	$1.1 < m_{K^0_S \pi^0} < 1.8$
MC expectation	~ 44	~ 170
fi t	8 ± 9	125 ± 40

Can we really fit for this? How do we deal with background asymmetries?

Systematic uncertainties due to background

- continuum background is not a real problem
 - expect no correlation between asymmetry and main B selection variables
 - extract average asymmetry from 'sidebands'
- background from B decays is much larger problem
 - different decays contribute with different (unknown) asymmetries:
 - ightarrow asymmetry depends on ΔE and $m_{
 m ES}$
 - \rightarrow cannot extract meaningful asymmetry from fit
 - current approach (babar)
 - ${}_{m{s}}$ use MC to estimate $B\overline{B}$ background yield
 - vary asymmetry within suitable range

Current uncertainty from $B\overline{B}$ background from BABAR:

	$0.8 < m_{K^0_S \pi^0} < 1.0$	$1.1 < m_{K^0_S \pi^0} < 1.8$
$\sigma^{syst}_{B\overline{B}}(S)$	0.04	0.24

- resonant/non-resonant differ due to ratio of signal to $B\overline{B}$ yield
- errors will decrease with better understanding of $B\overline{B}$ background composition and/or tighter cuts

Total systematic uncertainty for $S(K^*\gamma)$

From most recent measurements:

	BABAR	Belle
	(Moriond)	(hep-ex/0503008)
resolution function	0.01	0.05
vertexing technique	0.02	0.06
svt misalignment	0.02	
background fraction		0.02
signal/background pdfs	0.02	
$B\overline{B}$ background asymmetry	0.04	
tag side interference, Δm_B , $ au_B$	0.01	0.01
total	0.05	0.10

Experience/outlook from BABAR:

- current $B\overline{B}$ background asymmetry is 'conservative': just needs more work
- vertexing/resolution function' systematics limited by control sample size
- other contributions will become as small as for other CP measurements, like $\sin 2\beta_{\psi K_S^0}$

systematic uncertainty of ≤ 0.03 not unrealistic

Expected errors for some modes

Expected uncertainties for various modes, using efficiencies and S/B from slide 3:

Large uncertainties in some of these numbers: branching fractions, efficiencies, background rates

At \sim 50/ab, "systematic uncertainty \approx statistical uncertainty" for $B^0 \to K^{*0} \gamma$

Summary

- measuring photon polarization in $B^0 \to X\gamma$ decays via time-dependent CPV feasible for a handful of modes
- \blacksquare systematic uncertainty on S is

 $\sigma('\psi K^{0\,\prime}_{s})\oplus\sigma(ext{vertexing})\oplus\sigma(B\overline{B} ext{background})\lesssim 0.03$

• for $B^0 \to K^{*0}\gamma$ statistical uncertainty matches systematic at about 50 ab⁻¹

$$ightarrow$$
 at 50 ab $^{-1}$, $\sigma(S) \lesssim 0.04$

• for other modes, statistical errors dominate even at 50 ab^{-1}

$$\Rightarrow$$
 uncertainty on *S* typically between 0.05 and 0.1

Backup Slides

How to estimate the error for other modes?

Used following expressions to estimate error in measured asymmetry:

$$\sigma(\mathcal{A}) = rac{1}{\sqrt{N_S}} imes \sqrt{rac{N_S + N_B}{N_S}} imes \sqrt{rac{1}{\epsilon_{ ext{tag}}}} imes f(\sigma(\Delta t))$$

$$egin{array}{rcl} \epsilon_{ ext{tag}} &=& 0.30 \ \langle f_S
angle &pprox & 1.4 \sqrt{1 + \langle \sigma(\Delta t)/1.26
angle^2} / \sqrt{\epsilon_{ ext{vtx}}} \ \langle f_C
angle &pprox & 1.3 \end{array}$$

- parameters tuned to match toy MC expectations for $K^0_s \pi^0$
- $\, {}_{m s}\,$ expression within $\sim 5\%$ accurate for $K^0_s \pi^0$, $K^0_s \pi^0 \gamma$ and $J\!/\psi\,K^0_s$

Separating background in $m_{ m ES}/\Delta E$

• occupies low sideband in ΔE

$m{B}$ background and low momentum π^0

Most $B\overline{B}$ background associated with low momentum π^0 candidates:

