Experimental issues for measurements of the time-dependent CPV in $b \rightarrow s\gamma$ decays

Super B Factory Workshop, Hawaii April 2005

Wouter Hulsbergen (Maryland)

Outline

- motivation for studying TDCPV in $b \rightarrow s\gamma$
- experimentally accessible modes
- main experimental issues
- expected sensitivity in a super B factory
Motivation

- standard model: photon in $b \rightarrow q\gamma$ is predominantly left-handed

- Atwood, Gronau, Soni (1997): time-dependent CPV in $B^0 \rightarrow M_{CP}^0 \gamma$ decays is probe for photon polarization

\[
B^0 \rightarrow M^0\gamma_R \\
\bar{B}^0 \rightarrow M^0\gamma_L \rightarrow M^0\gamma_R
\]

interference suppressed by $\frac{2m_q}{m_b}$

- in the standard model, neglecting final state effects

\[
S(B^0 \rightarrow K^{*0}(\rightarrow K_s^0\pi^0)\gamma) = \eta_{CP} \times \sin(2\beta + 2\beta_s) \times 2m_s/m_b
\]

\[
S(B^0 \rightarrow \rho^0\gamma) = \eta_{CP} \times '0' \times 2m_d/m_b
\]

- Atwood, Gershon, Hazumi, Soni (2004): value of S independent of resonance structure in $B^0 \rightarrow P_1P_2\gamma$ can extend analysis to inclusive $B^0 \rightarrow K_s^0\pi^0\gamma$

- Grinstein, Grossman, Ligeti, Pirjol (2004): $b \rightarrow q\gamma g$ contribution not negligible

 - contribution from opposite helicity photon of order 0.1

 - contribution depends on $m_{P_1P_2}$
Which modes do we consider?

The most accessible modes are

<table>
<thead>
<tr>
<th>mode</th>
<th>$B \times 10^6$</th>
<th>typical efficiency</th>
<th>typical S/B</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0 \to K^*(890)^0\gamma \to K^0\pi^0\gamma$</td>
<td>13.4</td>
<td>0.055</td>
<td>1.5</td>
<td>[1,2]</td>
</tr>
<tr>
<td>$B^0 \to K_2^*(1430)^0\gamma \to K^0\pi^0\gamma$</td>
<td>2.1</td>
<td>0.05</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>other $B^0 \to K^0\pi^0\gamma$</td>
<td>$0 - 4?,$</td>
<td>0.05</td>
<td>0.5?</td>
<td></td>
</tr>
<tr>
<td>$B^0 \to K^0\eta\gamma$</td>
<td>$9 \pm 3,$</td>
<td>0.01?</td>
<td>0.8</td>
<td>[3]</td>
</tr>
<tr>
<td>$B^0 \to K^0\eta'\gamma$</td>
<td>$\sim 10?,$</td>
<td>0.01?</td>
<td>0.5?</td>
<td></td>
</tr>
<tr>
<td>$B^0 \to K^0\phi\gamma$</td>
<td>$\sim 3,$</td>
<td>0.013</td>
<td>3</td>
<td>[4]</td>
</tr>
<tr>
<td>$B^0 \to \rho^0\gamma$</td>
<td>$\sim 1,$</td>
<td>0.15</td>
<td>0.2?</td>
<td>[5,6]</td>
</tr>
<tr>
<td>$B^0 \to \omega\gamma$</td>
<td>$\sim 1?,$</td>
<td>0.09</td>
<td>0.3?</td>
<td>[5,6]</td>
</tr>
</tbody>
</table>

Note:

- not all these modes have been seen yet
- efficiencies and S/B not necessarily optimal for CPV measurement
What are the experimental issues?

- small branching fractions
 → need large data samples

- large backgrounds
 - physics background: continuum, other $B \rightarrow X\gamma$ decays, other B decays
 - machine background? → not in this talk

- for the most prominent $b \rightarrow s\gamma$ modes: Δt reconstruction

This talk: concentrate on $B^0 \rightarrow K^0_s\pi^0\gamma$, since that is where we have experience
What do we know about $B^0 \rightarrow K\pi\gamma$?

- branching fraction and direct CP asymmetry well measured in the self-tagging decays (charged kaon)

- contributions to $B^0 \rightarrow K\pi\gamma$ from

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{B} to $K\pi$</th>
<th>$\mathcal{B} \times 10^6$</th>
<th>\mathcal{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*(890)^0$</td>
<td>1</td>
<td>40.1 ± 2.0</td>
<td>-0.03 ± 0.03</td>
</tr>
<tr>
<td>$K_2^*(1430)^0$</td>
<td>0.5</td>
<td>12.4 ± 2.4</td>
<td>-0.08 ± 0.15</td>
</tr>
<tr>
<td>$K^*(1410)^0$</td>
<td>> 0.4</td>
<td></td>
<td>< 130</td>
</tr>
<tr>
<td>N.R. $(1.25 < m_X < 1.6)$</td>
<td></td>
<td></td>
<td>< 2.6</td>
</tr>
</tbody>
</table>

- note I: results for $K^*(1410)^0$ and N.R. obtained by BELLE on only 29.4/fb

 → more experimental input will help to understand how much statistics there actually is

- note II: signal-to-background-ratio depends on $m_{K\pi}$

 → this is of some relevance for systematic uncertainties
\(K\pi\) invariant mass distribution

- \(K^+\pi^-\gamma\) in 29/fb
 Belle hep-ex/0205025

\[\begin{array}{c}
\text{Events/(50MeV/c}^2) \\
\end{array} \]

- \(K^+\pi^-\gamma\) in 81/fb
 Babar hep-ex/0409035

\[\begin{array}{c}
\text{Events/(0.06 GeV/c}^2) \\
\end{array} \]

- \(K^0\pi^0\gamma\) in 253/fb
 Belle hep-ex/0503008

 \(\text{signal yield from binned fit}\)

- \(K^0\pi^0\gamma\) in 210/fb
 Babar Moriond 2005

\[\begin{array}{c}
\text{Weighted events} \\
\end{array} \]
Δt reconstruction for $B^0 \rightarrow K^0_S\pi^0\gamma$

Challenging vertexing problem:

- Δt requires z position of B_{CP}
- no charged tracks from B vertex!
 $\rightarrow K^0_S$ provides single 'trajectory'

Can we reconstruct the B vertex with only one trajectory?
Challenging vertexing problem:

- Δt requires z position of B_{CP}
- no charged tracks from B vertex!
 $\rightarrow K^0_S$ provides single ‘trajectory’

Solution (*BABAR* 2003)

- exploit small B lifetime + large boost
 \rightarrow small transverse motion
- intersect K^0_S with beam trajectory
 - size and position of interaction region (IR) known
 - increase size to account for transverse motion of B_{CP}
 - intersect K^0_S trajectory and IR in transverse plane
- resolution not much worse than for ‘normal’ decays, because tagvertex ‘dominates’ uncertainty
Δt reconstruction for $B^0 \rightarrow K^0_S \pi^0 \gamma$

Challenging vertexing problem:
- Δt requires z position of B_{CP}
- no charged tracks from B vertex! $\rightarrow K^0_S$ provides single 'trajectory'

New development in 2004
- 'beam-constraint' on B decay vertex does not really account from transverse motion \rightarrow leads to small bias in Δt scale
- used new vertexing algorithm (arxiv:physics/0503091) to apply constraint to B production vertex instead
- Δt now extracted from vertex fit to complete $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ decay tree \rightarrow requires sum-of-B-lifetime constraint to retain accuracy of old method

Remaining systematic uncertainty from vertex technique is small
Resolution depends on number of SVT layers traversed by pions from $K_S^0 \ldots$
Vertexing inefficiency

Events with $\sigma(\Delta t) > 2.5$ ps are not used for time-dependent fits

Fraction of usable events depends on K^0_S momentum spectrum:

- $B^0 \rightarrow K^0_S\pi^0$, $\epsilon_{\text{vtx}} \approx 0.61$
- $B^0 \rightarrow K^{*0}\gamma$, $\epsilon_{\text{vtx}} \approx 0.72$
Δt resolution

$\sigma(\Delta t)$ for different samples

- $J/\Psi K_s^0$, mean = 0.66
- $K_s^0\pi^0$, mean = 1.01
- $K_s^0\pi^0\gamma$, mean = 1.14
- 'mangled' $J/\Psi K_s^0$

error on S from 100 perfectly tagged events

\[
0.136 \sqrt{1 + x^2/1.26^2}
\]

Loss in sensitivity due to loss in vertexing resolution:

- $\sim 15\%$ from 'vertexing efficiency'
- $\sim 20\%$ from resolution effect

<table>
<thead>
<tr>
<th></th>
<th>$\langle \sigma(\Delta t) \rangle$</th>
<th>$\sigma(S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi K_s^0$</td>
<td>0.66</td>
<td>~ 0.15</td>
</tr>
<tr>
<td>$K_s^0\pi^0\gamma$</td>
<td>1.14</td>
<td>~ 0.18</td>
</tr>
</tbody>
</table>
SVT geometry

Babar and Belle vertex detectors

Beam Pipe 27.8mm radius
Layer 5a
Layer 5b
Layer 4b
Layer 4a
Layer 3
Layer 2
Layer 1

<table>
<thead>
<tr>
<th></th>
<th>BELLE SVD1</th>
<th>BELLE SVD2</th>
<th>BABAR SVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>outer radius [cm]</td>
<td>6.0</td>
<td>8.8</td>
<td>14.2</td>
</tr>
<tr>
<td>inner radius [cm]</td>
<td>3.0</td>
<td>2.0</td>
<td>3.2</td>
</tr>
<tr>
<td>beam pipe [cm]</td>
<td>2.0</td>
<td>1.5</td>
<td>2.8</td>
</tr>
<tr>
<td>’vertexing efficiency’</td>
<td>0.41</td>
<td>0.55</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Size matters!

need precision tracking up to large distances
Backgrounds

Background sources

- combinatorial background from the continuum
- $B \rightarrow X\gamma$ background, for example $B^+ \rightarrow K_s^0\pi^+\gamma$
 → real photon, but soft/fake π^0 from the other B
- ‘generic’ B background, for example $B \rightarrow XK_s^0\pi^0$, $B \rightarrow XK_s^0\eta$
 → photon background from hard π^0 or η
 → partially removed with explicit π^0/η vetoes

Estimated composition of data sample per 1/ab, using current BABAR selection:

<table>
<thead>
<tr>
<th></th>
<th>$0.8 < m_{K\pi} < 1.0$</th>
<th>$1.1 < m_{K\pi} < 1.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fit region</td>
<td>signal region</td>
</tr>
<tr>
<td>signal</td>
<td>840</td>
<td>650</td>
</tr>
<tr>
<td>continuum</td>
<td>6200</td>
<td>230</td>
</tr>
<tr>
<td>$B\bar{B}$</td>
<td>200</td>
<td>40</td>
</tr>
</tbody>
</table>

Fit region: $m_{ES} > 5.2$, $-0.25 < \Delta E < 0.25$. Signal box: $m_{ES} > 5.27$, $-0.2 < \Delta E < 0.1$, $L_2/L_0 < 0.4$

There is a substantial background from other B decays
Fitting for background composition

BABAR data + fit for $B^0 \rightarrow K^{*0}\gamma$

![Graphs showing data and fit for $B^0 \rightarrow K^{*0}\gamma$.](image)

Compare fitted $B\bar{B}$ yield to expectation (*BABAR*, Moriond 2005):

<table>
<thead>
<tr>
<th></th>
<th>$K^{*}(890)$ region</th>
<th>above the $K^{*}(890)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0.8 < m_{K_S^0\pi^0} < 1.0$</td>
<td>$1.1 < m_{K_S^0\pi^0} < 1.8$</td>
</tr>
<tr>
<td>MC expectation</td>
<td>~ 44</td>
<td>~ 170</td>
</tr>
<tr>
<td>fit</td>
<td>8 ± 9</td>
<td>125 ± 40</td>
</tr>
</tbody>
</table>

Can we really fit for this? How do we deal with background *asymmetries*?
Systematic uncertainties due to background

- continuum background is not a real problem
 - expect no correlation between asymmetry and main B selection variables
 - extract average asymmetry from 'sidebands'

- background from B decays is *much larger problem*
 - different decays contribute with different (unknown) asymmetries:
 - asymmetry depends on ΔE and m_{ES}
 - cannot extract meaningful asymmetry from fit
 - current approach (babar)
 - use MC to estimate $B\bar{B}$ background yield
 - vary asymmetry within suitable range

Current uncertainty from $B\bar{B}$ background from BABAR:

<table>
<thead>
<tr>
<th>$0.8 < m_{K_S^0\pi^0} < 1.0$</th>
<th>$1.1 < m_{K_S^0\pi^0} < 1.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{syst}^{B\bar{B}}(S)$</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
</tr>
</tbody>
</table>

- resonant/non-resonant differ due to ratio of signal to $B\bar{B}$ yield
- errors will decrease with better understanding of $B\bar{B}$ background composition and/or tighter cuts
Total systematic uncertainty for $S(K^*\gamma)$

From most recent measurements:

<table>
<thead>
<tr>
<th></th>
<th>BABAR (Moriond)</th>
<th>BELLE (hep-ex/0503008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution function</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>vertexing technique</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>svt misalignment</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>background fraction</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>signal/background pdfs</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>$B\bar{B}$ background asymmetry</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>tag side interference, $\Delta m_B, \tau_B$</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>total</td>
<td>0.05</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Experience/outlook from BABAR:

- current $B\bar{B}$ background asymmetry is ‘conservative’: just needs more work
- ‘vertexing/resolution function’ systematics limited by control sample size
- other contributions will become as small as for other CP measurements, like $\sin 2\beta_{\psi K_S}^0$

$\text{systematic uncertainty of } \lesssim 0.03 \text{ not unrealistic}$
Expected errors for some modes

Expected uncertainties for various modes, using efficiencies and S/B from slide 3:

![Graph showing statistical error in S for 50/ab and estimated error on S for $B^0 \rightarrow K^{*0} \gamma$.]

Large uncertainties in some of these numbers: branching fractions, efficiencies, background rates

At $\sim 50/ab$, "systematic uncertainty \approx statistical uncertainty" for $B^0 \rightarrow K^{*0} \gamma$
Summary

- measuring photon polarization in $B^0 \to X\gamma$ decays via time-dependent CPV feasible for a handful of modes

- systematic uncertainty on S is

$$\sigma(\psi K^0_s) \oplus \sigma(\text{vertexing}) \oplus \sigma(B\bar{B}\text{background}) \lesssim 0.03$$

- for $B^0 \to K^{*0}\gamma$ statistical uncertainty matches systematic at about 50 ab$^{-1}$

 \Rightarrow at 50 ab$^{-1}$, $\sigma(S) \lesssim 0.04$

- for other modes, statistical errors dominate even at 50 ab$^{-1}$

 \Rightarrow uncertainty on S typically between 0.05 and 0.1
Backup Slides
How to estimate the error for other modes?

Used following expressions to estimate error in measured asymmetry:

\[
\sigma(A) = \frac{1}{\sqrt{N_S}} \times \sqrt{\frac{N_S + N_B}{N_S}} \times \sqrt{\frac{1}{\epsilon_{\text{tag}}} \times f(\sigma(\Delta t))}
\]

\[
\epsilon_{\text{tag}} = 0.30
\]
\[
\langle f_S \rangle \approx 1.4\sqrt{1 + \langle \sigma(\Delta t)/1.26 \rangle^2 / \epsilon_{\text{vtx}}}
\]
\[
\langle f_C \rangle \approx 1.3
\]

- parameters tuned to match toy MC expectations for \(K_S^0 \pi^0 \)
- expression within \(\sim 5\% \) accurate for \(K_S^0 \pi^0, K_S^0 \pi^0 \gamma \) and \(J/\psi K_S^0 \)
Separating background in $m_{ES}/\Delta E$

Typical for $B\bar{B}$ background:
- (sort of) peaks in m_{ES}
- occupies low sideband in ΔE
B background and low momentum π^0

Most $B\bar{B}$ background associated with low momentum π^0 candidates:

- Use hard cuts on π^0 energy.