PHYSICS 152 — COLLEGE PHYSICS II
UH MANOA — Spring Semester 2015

Course Information & Policies

Lecture
MWF 9:30–10:20 a.m.
Physical Science Building (“PSB” or “PhySci”), Rm. 217

Instructor
Mr. Michael Nassir
E-mail: nassir@hawaii.edu
Course Website: to be announced
Office: Watanabe Hall, Rm. 426, (808) 956-2922 (office hours by appointment)

Problem Sessions:
• Wednesdays 3:00–4:30pm, Watanabe 420 (starting Jan. 21)
• Thursdays 3:00–4:30pm, PSB 217 (starting Jan. 22)

Individual Assistance:
• Physics TA tutoring — approx. 20 hrs/week in Watanabe 421 — starts week of Jan. 20
• Natural Sciences Learning Emporium Physics tutoring — approx. 20 hrs/week in Bilger Addition 209 — starts week of Jan. 20
• Learning Assistance Center tutoring — by appointment in Sinclair Library

Required Materials
TEXTBOOK: Young, Hugh D., College Physics, 9th ed. (2012), Volume 2 only (Chaps. 17–30)
• UH Bookstore offers three options, and “bundles” each of the following with a Mastering Physics access code:
 • full text in hardcover (~$255)
 • full text in “looseleaf” (~$170) Looseleaf cannot be sold back to UH Bookstore
 • volume 2 only in paperback (~$161)
• “eText”-only access can be purchased (for 18 months) through Mastering Physics

ONLINE HOMEWORK ACCESS: Mastering Physics website — requires access code (valid for 18 months) either using Access Kit or via online purchase (~$65 for MP homework system only, ~$110 including “eText”):
http://www.masteringphysics.com

SCIENTIFIC CALCULATOR with scientific notation, trig functions, exponents, & logarithms — bring to lab & exams (necessary!) and lectures (needed for occasional in-class questions). Graphing or programmable calculators are allowed, but are NOT necessary. Smart phones, tablets, computers, or similar devices are NOT permitted during exams!

Optional Books
Gonick & Huffman, The Cartoon Guide to Physics (1990) paperback (~$18 new, ~$10 used at UH Bookstore)
Course Description
This course continues a two-semester introduction to the fundamentals of physics begun in Physics 151, and will cover electricity, magnetism, optics, special relativity, and atomic & nuclear physics. Lectures and problem-solving will regularly use the mathematical tools of algebra, geometry, trigonometry, and vectors, but not calculus.

Prerequisites:
- A grade of “C” or better in PHYS 151
- A grade of “C” or better in MATH 140 (trigonometry & pre-calculus) or MATH 215 or higher; or instead, a passing score on the Mathematics Department’s Math Placement Exam (≥14 on Part I & ≥10 on Part II).

Lab: If you also need to take PHYS 152L lab, it is strongly recommended that you do so concurrently with the lecture; the lab provides a hands-on way of reinforcing and complementing many of the topics presented in lecture. However, concurrent enrollment in PHYS 152L lab is not mandatory for all students in PHYS 152 lecture.

PHYS 152 Learning Outcomes — General
At the conclusion of this course, students should be able to:
- Define and use the terminology of electricity, magnetism, light & optics, and modern physics.
- Apply the equations and principles of non-calculus-based physics to solve a wide range of problems in electricity, magnetism, light & optics, and modern physics.
- Incorporate terminology, equations, and principles from mechanics, waves, fluids, and thermodynamics (PHYS 151) when appropriate.
- Recognize how and where these principles occur in natural phenomena, technological and professional applications, and daily life.

PHYS 152 Learning Outcomes — Detailed
At the conclusion of this course, students should be able to:
- Describe the nature and location of net electric charge on the atom and macroscopic objects, and apply Coulomb’s Law to calculate the resulting force.
- Understand the relationship of electric field to electric force; construct and interpret electric field line diagrams; calculate electric field quantitatively for simple geometries (point charges and parallel plates).
- Define electric potential (voltage) and its relationship to electric potential energy; understand the relationship of electric field and electric potential in both diagrams and equations; calculate electric potential quantitatively for simple geometries (point charges and uniform fields).
- Describe capacitance and dielectric behavior; calculate capacitance for geometry of ideal parallel plates; use equations relating capacitance, potential, charge, and stored energy; understand behavior of multiple capacitors in parallel or series.
- Draw and interpret basic schematic circuit diagrams.
- Understand the nature of current, resistance, and emfs; apply Ohm’s Law and power equations to individual resistors.
- Understand behavior of multiple resistors in series or parallel, and apply Kirchhoff’s Rules to analyze simple and DC circuits.
- Quantitatively analyze R-C DC circuits.
- Describe behavior of magnetic poles and the nature of permanent magnetism in metals.
- Understand magnetic field, and construct and interpret magnetic field line diagrams.
- Find magnitude and direction of magnetic force on moving charges, and quantitatively describe the resulting circular motion.
- Find magnitude and direction of magnetic force on current-carrying wires, including torque on a closed loop of wire.
- Find shape and strength of magnetic field generated by a current in certain simple geometries (infinitely long straight wire, simple loop, ideal solenoid).
- Understand the phenomenon of electromagnetic induction; find magnitude and direction of induced emf using magnetic flux, Faraday’s Law, and Lenz’s Law; understand the source of eddy currents/magnetic braking and basic operation of AC generators.
- Understand self-inductance, and quantitatively analyze L-R DC circuits.
- Understand behavior of resistors, capacitors, and inductors in simple AC circuits, and calculate reactance/impedance for simple AC circuits.
- Understand and calculate resonant response of L-R-C AC circuits, including analogy to a mechanical oscillating system.
• Understand the electromagnetic nature of light waves and their fundamental behavior in both vacuum and matter; know the regions and nomenclature of the EM spectrum.
• Calculate paths of light rays undergoing simple reflection or refraction (using Snell’s Law) at interfaces.
• Understand phenomena of dispersion (qualitatively) and polarization (both qualitatively and quantitatively, via Malus’s Law and Brewster’s Law).
• Understand the function of a lens, and calculate size & location of images formed by a single thin lens or curved mirror.
• Understand the phenomenon of wave diffraction and the interference that results; quantitatively describe interference formed by reflection from a thin layer; calculate locations of maxima/minima for one-slit, two-slit, and grating geometries.
• Understand and calculate relativistic difference of distance and time measurements between two moving observers, using basic Lorentz transformations and equations for relativistic momentum and energy.
• Understand wave-particle duality of both light and matter, qualitative implications, and quantitative treatment via equations (photoelectric effect, photon energy and momentum, DeBroglie wavelength, Heisenberg’s Uncertainty Principle).
• Understand basic structure and energy levels of atoms, including formation/absorption of line spectra via electronic transitions.
• Understand the qualitative nature of blackbody (thermal) radiation and formation of continuous spectra, and quantitative application of Wien’s Law and Stefan-Boltzmann Law.
• Describe the constituents of the atomic nucleus, their fundamental properties, and their relationship to families of fundamental particles.
• Describe qualitatively the main processes of radioactive decay, fusion, and fission; use conservation laws to balance nuclear & particle reactions; perform quantitative calculations involving decay rates/half-lives and mass-energy conversion.
Grading & Course Work

• Final grades will be computed on a curve (to be decided), based on your overall course percentage relative to the other students in the class. Your overall course percentage will be computed as follows:

<table>
<thead>
<tr>
<th>Homework (Paper + Online)</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exams #1 & #2</td>
<td>17.5% each</td>
</tr>
<tr>
<td>Final Exam</td>
<td>35%</td>
</tr>
</tbody>
</table>

After each major exam, I will circulate grade sheets (listed by your “roster numbers,” not names) displaying all of your scores, and I will provide a histogram showing the relative scores of everyone in the class. I urge you to double-check your scores on my grade sheets, as well as the score tallies on your individual papers. While I apologize in advance for any errors, they may well happen with such a large class — please help me to correct them.

Final exam scores and final grades will be posted online (and grades will appear in MyUH) shortly after the term ends.

• Paper Homework sheets will usually be due on Fridays in lecture (with some exceptions due to holidays or exams), and will be graded either by our class grader or by me; please see me outside of class with any questions about grading. Late paper homework will NOT be accepted for any reason after solutions for that assignment have been publicized (either solutions posted online, or graded homeworks returned, whichever occurs first). All paper homework assignments will be worth the same number of points, and your TWO lowest paper homework scores will be dropped.

• Online Mastering Physics Homework will usually be due on Mondays and will be graded automatically on the Mastering Physics website. Your scores likewise will be reported to me automatically. Late online homework is allowed, at a penalty of –10% per day (prorated by fraction of a day). Details on how to log in at http://www.masteringphysics.com will be provided on a separate page.

• Two Midterm Exams will test you on material from each month of the course. Roughly one-third of the Final Exam will cumulatively review all of this midterm material, while two-thirds of the final exam will test new material from the last month of the course. The two midterms exams will be 50 minutes long (given during regular class periods):

<table>
<thead>
<tr>
<th>Midterm</th>
<th>Date</th>
<th>Chaps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Friday, Feb 13</td>
<td>17–19</td>
</tr>
<tr>
<td>#2</td>
<td>Friday, Mar 20</td>
<td>20–22</td>
</tr>
<tr>
<td>Final</td>
<td>Friday, May 15</td>
<td>9:45a.m.</td>
</tr>
</tbody>
</table>

You are allowed to bring 1 sheet of handwritten notes (no printouts or photocopies) to the first and second midterms, and 2 sheets to the final exam. However, do NOT let your “cheat sheet” become a substitute for learning formulas and practicing problems! (Graduate school exams, like the MCAT or GRE, do NOT allow open notes — you must memorize your formulas.) You will be allowed to retain your “cheat sheets” after each exam to build upon for later exams. You must take all midterms and the final exam to avoid a failing grade in the course.

• Reading assignments will be assigned on handouts and on course webpages. The listed reading assignments are the specific sections of the text that will be covered in lecture and that you will be responsible to know for exams. Short tutorials with interactive applets and audio & video clips are available through the “Study Area” inside Mastering Physics.
Solving Physics Problems

- You will need a calculator with scientific functions (trigonometric & exponential/logarithmic functions, and power-of-10 notation) for homework AND EXAMS. (Graphing calculators are not necessary.)

- On all assignments and exams that call for free-response answers, you must SHOW YOUR WORK. Writing only the correct final answer without showing your steps is not acceptable and will result in little or no credit. It is a central notion in science to show your method along with your results, so that others can follow your reasoning and can question any steps or assumptions. Also, clear and complete explanations will only help you later when you review your own work and study for exams. It is never possible to “show too much work,” but it is easy not to show enough!

Always display your major mathematical steps from your initial formula(s) to your final answer, and annotate your reasoning with sketches and verbal explanations where appropriate. Mathematical steps should read sequentially and logically. Final answers must include UNITS and use an appropriate number of SIGNIFICANT FIGURES, and sometimes should be written in SCIENTIFIC NOTATION. To receive full credit, your answers to free-response problems MUST contain the following:

1. initial formula, followed by major algebraic rearrangement steps (if necessary)
2. substitution (“plugging in” known values), followed by major calculation steps (if necessary)
3. final answer, underlined or boxed, with proper units, sci. notation (if needed), & significant figures
4. additional diagrams or comments, as needed to define quantities (…a picture is worth 10² words!)

- Organization and neatness matter! Both should result naturally if you follow the above format. Disorganized or illegible work will be penalized.

- Please do NOT use red ink on any assignments or exams — we reserve that color for grading.

Collaboration

Working in pairs or groups is common in science, and indeed is encouraged: teamwork can help you to make more efficient measurements and to catch errors, and explaining something to another person is a great way to learn it yourself. However, if you are working with a classmate while completing a physics assignment (or while making measurements in lab), there are a few guidelines to follow:

(1) You are strongly encouraged first to attempt each homework problem YOURSELF, individually (or, in lab, to make some of your lab measurements yourself). That way, you will get the educational value and the experience that comes from working the problem (or using the equipment) and “seeing for yourself.” Then, after you have tried first on your own, you can compare your answer (or lab results) to others’ work as a “sanity check.”

On homework: If you are stuck on a homework problem, you should seek just enough help to get unstuck. It is unwise to let someone simply feed you the entire solution, since you lose the educational value of working through the problem on your own. If necessary, try changing the numerical values in the problem and attempting it again by yourself, to ensure that you understand completely how to do the problem if you were to encounter it again on your own… say, on an exam.

In lab: If your results differ from other students’ results by only a bit, then you should keep your own results — most scientific measurements vary slightly due to “random error” (this will be discussed in lab), so you should not change yours to match your classmates’ results exactly. After all, how do you know which result is “correct,” yours or your classmates’? Record what you see or measure. (If your results differ wildly, then it is appropriate to try to figure out “what went wrong.” Small variations, however, are common and are a natural part of the random error inherent in making measurements.)

(2) All free-response solutions on all submitted assignments should ultimately be in your own words, reflecting your own understanding of the problems. You should plug numbers into your calculator and attempt (or re-attempt) all calculations yourself, even if you received assistance from others along the way.

Any passages or calculations that are directly copied or plagiarized from another student (or portions lifted from any other uncited source) will be given a score of zero. Again, your submitted work should reflect your own understanding of the problems.

In lab: If you make measurements together with a lab partner, make a note in your lab report of who your lab partner was for any particular experiment. Then, be sure that your calculations and the written passages of your lab reports are in your own words, even if your initial data or measurements are identical to your partner’s.
(3) During **in-class exams, NO collaboration** of any sort is allowed; exams must be *entirely your own work*. Exams copied from another student, even partially, will be given a score of **zero**. Cases of cheating or plagiarism may be referred to the Office of Judicial Affairs for disciplinary review.

Getting Help

- **Regularly-scheduled problem sessions** (solving homework problems, answering questions, etc.) will be held every Wednesday & Thursday afternoon. Thursday’s session is mostly a repeat of Wednesday’s session. See p. 1 for location & times.

- The **Physics Learning Center in Watanabe 421** is open whenever Watanabe Hall is open, for all students to use to study (alone or together) on physics homework. There are tables, sofas, blackboards, etc., available for your use. All Physics lab TAs schedule their two weekly office hours in Watanabe 421 as **tutoring hours** — FREE help with any physics homework problems or other physics questions (although lab TAs will give first priority to their own students with lab-related questions). Go to Wat 421 and check the posted schedule for tutoring times.

- The **Natural Sciences Learning Emporium in Bilger Addition 209** is open M–F, approx. 8am–5:30pm, for all students to seek help with lower-division math or science classes, or just to use the group study tables to work together. Schedules of tutors for physics and all other subjects are posted on the door to BilA 209 and online: http://www.hawaii.edu/natsci/learningemporium.php

- The **Learning Assistance Center** in Sinclair Library offers free, one-on-one tutoring for PHYS 151 & 152 and many other large math & science courses. Appointments are made online, at least 24 hours in advance: http://manoa.hawaii.edu/learning/tutoring.html

- You may also drop by to see me in **my office, Watanabe 426**, during afternoons at times other than the regularly scheduled help sessions. I suggest that you call first (956-2922) to make sure that I am in. Please forgive me if I happen to be busy and ask you to return at another time. You may also make an appointment with me if you wish. For questions about physics problems & concepts, please first try to attend my problem sessions or use one of the above tutoring resources.

- The Department of Physics & Astronomy Office (Watanabe 416) maintains a list of grad students and others who are available for hire as **private tutors** — please stop by Wat 416 and ask the Department secretary for a copy of the list.

Extra Handouts

Extra copies of all handouts from the two or three previous lectures will be brought to every lecture and problem session. Most handouts will be available sometime after lecture as PDF files, and you will be given links for downloading them via the course webpage or via e-mail announcements.

Graded Papers

Graded papers will be circulated in lecture once they are graded. Any papers that are not picked up in lecture will be left in the **wooden cubby boxes outside the rear of our lecture hall, PSB 217**. Look for “PHYS 152 Spring 2015” and find the box for your roster number. Please leave the boxes tidy and organized for your classmates’ benefit! Mahalo.
Get Started with Pearson’s MasteringPhysics

First, make sure you have these 3 things...

- Your E-mail address & UH ID number
- PHYS 151 Course ID: UHMPHYS151SPR15
- PHYS 152 Course ID: UHMPHYS152SPR15

Access code or credit card: The required access code comes either with your book or by itself at your bookstore. Alternatively, you can buy instant access with a credit card or PayPal account during registration.

Next, get registered!

1. Go to www.masteringphysics.com. Under the large Register Now section on the right side of the page, click the Student button.

2. Read the onscreen instructions and select your location. Next, check off whether or not you have a Course ID. If you have a Course ID code provided by your instructor, type it in and Click Go. If your course does not require an ID, Click on that radio button next to it and Click Next. Check with your professor to be sure.

3. You will now need to enter your Access Code that may have been included with your textbook or student access card available from your campus bookstore.

4. If you don’t have an access code, select your textbook (correct title, author, and edition) and whether you want an eText.

5. You’ll then be asked to Accept the License Agreement before moving on. After this, either Create a new Pearson username/password, or, if you’ve already registered for another Pearson product (i.e. MyMathLab), enter that username/password. If you have an Access Code, enter it on the bottom of the page.

6. On the next page, fill out the appropriate information fields then click Next. If you entered an Access Code, you will be brought to a page from which you can access your product. If not, enter your payment information so that you can Purchase Access, after which you’ll be granted access.

7. You are now registered! Now, it’s time to enroll in your course. Click Log In Now. Once signed in you can: enter your Course ID (same as Step #2) and your Student ID (if prompted to do so). That’s it!

Need help?

Visit www.masteringphysics.com for:
- Helpful videos
- Frequently Asked Questions
- Set Up Your Computer

Or visit our 24/7 Technical Support site at http://247pearsoned.custhelp.com