Today's agenda (2-FEB-2010)

- Will check your web page (links), which should include
- Block diagram
- Acronym (what it is called)
- Schedule outline
- Description paragraph
- To be augmented with table of specifications
- IBM submission updates

Suggested Milestones

- Specification Review [Feb 15]
- Complete schematics
- Block diagram
- Table of key parameters
- Design Readiness Review [March 1-14]
- Design simulations, iteration
- Confirmation of key parameters
- Begin Layout [March 15]
- Floorplanning
- All April to complete layout
- LVS checks during hierarchy build
- Post layout simulations
- Final Design Review [early May]
- Compile documentation, hold review
- Final confirmation of key parameters

Outline

- Scaling
- Transistors
- Interconnect
- Future Challenges
- VLSI Economics

Moore's Law

- In 1965, Gordon Moore predicted the exponential growth of the number of transistors on an IC
- Transistor count doubled every year since inventio
- Predicted > 65,000 transistors by 1975!

More Moore

- Transistor counts have doubled every 26 months for the past three decades.

Speed Improvement

- Clock frequencies have also increased exponentially
- A corollary of Moore's Law

Why?

- Why more transistors per IC?
-Why faster computers?

Why?

- Why more transistors per IC?
- Smaller transistors
- Larger dice
- Why faster computers?

Why?

- Why more transistors per IC?
- Smaller transistors
- Larger dice
- Why faster computers?
- Smaller, faster transistors
- Better microarchitecture (more IPC)
- Fewer gate delays per cycle

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
- Transistors become cheaper
- Transistors become faster
- Wires do not improve (and may get worse)
- Scale factor S
- Typically $S=\sqrt{2}$
- Technology nodes

Scaling Assumptions

- What changes between technology nodes?
- Constant Field Scaling
- All dimensions ($x, y, z=>W, L, t_{o x}$)
- Voltage (VDD)
- Doping levels
- Lateral Scaling
- Only gate length L
- Often done as a quick gate shrink ($S=1.05$)

Table 4.15 Influence of scaling on MOS device characteristics			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L			
Width: W			
Gate oxide thickness: t_{ox}			
Supply voltage: $V_{D D}$			
Threshold voltage: $V_{t r s} V_{t p}$			
Substrate doping: N_{A}			
Device Characteristics			
β			
Current: $I_{d s}$			
Resistance: R			
Gate capacitance: C			
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device characteristics			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s} V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β			
Current: $I_{d s}$			
Resistance: R			
Gate capacitance: C			
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device characteristics			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s} V_{t p}$		1/S	1
Substrate doping: N_{A}		s	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	s	S
Current: $I_{d s}$			
Resistance: R			
Gate capacitance: C			
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device characteristic			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s}, V_{t p}$		1/S	1
Substrate doping: N_{A}		s	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	s
Resistance: R			
Gate capacitance: C			
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device charact			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s}, V_{t p}$		1/S	1
Substrate doping: N_{A}		s	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	s
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	s
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C			
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device charac			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s}, V_{t p}$		1/S	1
Substrate doping: N_{A}		s	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	s
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ			
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t n}, V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	S
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f			
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		$1 / S$	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t n}, V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	S
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f	$1 / \tau$	S	S^{2}
Dynamic power dissipation (per gate): P			
Chip area: A			
Power density			
Current density			

Table 4.15 Influence of scaling on MOS device charac			
Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t r s}, V_{t p}$		1/S	1
Substrate doping: N_{A}		s	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	s
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f	1/ τ	s	S^{2}
Dynamic power dissipation (per gate): P	$C^{2} f$	$1 / S^{2}$	s
Chip area: A			
Power density			
Current density			

Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		$1 / S$	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t n}, V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	S
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f	1/ τ	S	S^{2}
Dynamic power dissipation (per gate): P	$C V^{2} f$	$1 / S^{2}$	S
Chip area: A		$1 / S^{2}$	1
Power density			
Current density			

Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		$1 / S$	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t n}, V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	S
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	1/S
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	1/S
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f	1/ τ	S	S^{2}
Dynamic power dissipation (per gate): P	$C V^{2} f$	$1 / S^{2}$	S
Chip area: A		$1 / S^{2}$	1
Power density	P/A	1	S
Current density			

Parameter	Sensitivity	Constant Field	Lateral
Scaling Parameters			
Length: L		1/S	1/S
Width: W		1/S	1
Gate oxide thickness: t_{ox}		1/S	1
Supply voltage: $V_{D D}$		1/S	1
Threshold voltage: $V_{t n}, V_{t p}$		1/S	1
Substrate doping: N_{A}		S	1
Device Characteristics			
β	$\frac{W}{L} \frac{1}{t_{\mathrm{ox}}}$	S	S
Current: $I_{d s}$	$\beta\left(V_{D D}-V_{t}\right)^{2}$	1/S	S
Resistance: R	$\frac{V_{D D}}{I_{d s}}$	1	$1 / S$
Gate capacitance: C	$\frac{W L}{t_{\mathrm{ox}}}$	1/S	$1 / S$
Gate delay: τ	RC	1/S	$1 / S^{2}$
Clock frequency: f	1/ τ	S	S^{2}
Dynamic power dissipation (per gate): P	$C V^{2} f$	$1 / S^{2}$	S
Chip area: A		$1 / S^{2}$	1
Power density	P/A	1	S
Current density	$I_{d j} / A$	S	S

Observations

- Gate capacitance per micron is nearly independent of process
- But ON resistance * micron improves with process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)
- Velocity saturation makes lateral scaling unsustainable

Example

- Gate capacitance is typically about $2 \mathrm{fF} / \mu \mathrm{m}$
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about $0.5 f$ ps
- Estimate the ON resistance of a unit ($4 / 2 \lambda$) transistor.

Solution

- Gate capacitance is typically about $2 \mathrm{fF} / \mu \mathrm{m}$
- The FO4 inverter delay in the TT corner for a process of feature size f (in nm) is about $0.5 f \mathrm{ps}$
- Estimate the ON resistance of a unit ($4 / 2 \lambda$) transistor.
- $\mathrm{FO}=5 \tau=15 \mathrm{RC}$
- $R C=(0.5 f) / 15=(f / 30) \mathrm{ps} / \mathrm{nm}$
- If $W=2 f, R=8.33 \mathrm{k} \Omega$
- Unit resistance is roughly independent of f

Scaling Assumptions

- Wire thickness
- Hold constant vs. reduce in thickness
- Wire length
- Local / scaled interconnect
- Global interconnect
- Die size scaled by $D_{c} \approx 1.1$

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{u f}$			
Parallel plate capacitance per unit length: $C_{w p}$			
Total wire capacitance per unit length: C_{w}			
Unrepeated RC constant per unit length: $t_{\text {wu }}$			
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)			
Crosstalk noise			

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{w f}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{u p}$			
Total wire capacitance per unit length: C_{w}			
Unrepeated RC constant per unit length: $t_{\text {wu }}$			
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)			
Crosstalk noise			

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{w f}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{w p}$	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_{w}			
Unrepeated RC constant per unit length: $t_{\text {wu }}$			
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)			
Crosstalk noise			

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{w f}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{u p}$	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_{w}	$C_{u f f}+C_{w p}$	1	between 1, S
Unrepeated RC constant per unit length: $t_{\text {wu }}$			
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)			
Crosstalk noise			

Table 4.16 Influence of scaling on interconnect characteristics			
Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{\text {wf }}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{w p}$	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_{w}	$C_{w f}+C_{w p}$	1	between 1, S
Unrepeated RC constant per unit length: $t_{\text {wu }}$	$R_{w} C_{w}$	S^{2}	between S, S^{2}
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)			
Crosstalk noise			

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{\text {wf }}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{w p}$	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_{w}	$C_{u f}+C_{w p}$	1	between $1, S$
Unrepeated RC constant per unit length: $t_{\text {wu }}$	$R_{w} C_{w}$	S^{2}	between S, S^{2}
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)	$\sqrt{R C R_{w} C_{w}}$	\sqrt{S}	$\sqrt[b]{\sqrt{S}}$
Crosstalk noise			

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: h		1/S	
Characteristics Per Unit Length			
Wire resistance per unit length: R_{w}	$\frac{1}{w w t}$	S^{2}	S
Fringing capacitance per unit length: $C_{u f}$	$\frac{t}{s}$	1	S
Parallel plate capacitance per unit length: $C_{v p}$	$\frac{w}{b}$	1	1
Total wire capacitance per unit length: C_{w}	$C_{u f f}+C_{w p}$	1	between 1, S
Unrepeated RC constant per unit length: $t_{\text {wu }}$	$R_{w} C_{w}$	S^{2}	between S, S^{2}
Repeated wire RC delay per unit length: $t_{w r}$ (assuming constant field scaling of gates in Table 4.15)	$\sqrt{R C R_{w} C_{w}}$	\sqrt{S}	between 1, \sqrt{S}
Crosstalk noise	$\frac{t}{s}$	1	S

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: $/$			
Unrepeated wire RC delay			
Repeated wire delay			
Global Interconnect Characteristics			
Length: $/$			
Unrepeated wire RC delay			
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: l		1/S	
Unrepeated wire RC delay			
Repeated wire delay			
Global Interconnect Characteristics			
Length: l			
Unrepeated wire RC delay			
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		$1 / S$	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect C			
Length: $/$		1/S	
Unrepeated wire RC delay	$l^{2} t_{\text {wu }}$	1	between $1 / S, 1$
Repeated wire delay			
Global Interconnect Charact			
Length: $/$			
Unrepeated wire RC delay			
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		1/S	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: l		1/S	
Unrepeated wire RC delay	$l^{2} t_{\text {wus }}$	1	between $1 / S, 1$
Repeated wire delay	$l t_{\text {wr }}$	$\sqrt{1 / S}$	between $1 / S, \sqrt{1 / S}$
Global Interconnect Charact			
Length: $/$			
Unrepeated wire RC delay			
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: l		1/S	
Unrepeated wire RC delay	$l^{2} t_{\text {wu }}$	1	between $1 / S, 1$
Repeated wire delay	$l t_{\text {wr }}$	$\sqrt{1 / S}$	between $1 / S, \sqrt{1 / S}$
Global Interconnect Charact			
Length: l			c
Unrepeated wire RC delay			
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: $/$		1/S	
Unrepeated wire RC delay	$l^{2} t_{\text {wu }}$	1	between $1 / S, 1$
Repeated wire delay	$l t_{\text {wr }}$	$\sqrt{1 / S}$	between $1 / S, \sqrt{1 / S}$
Global Interconnect Charact			
Length: $/$		D_{c}	
Unrepeated wire RC delay	$l^{2} t_{\text {wus }}$	$S^{2} D_{\epsilon}^{2}$	between $S D_{c}^{2}, S^{2} D_{\epsilon}^{2}$
Repeated wire delay			

Table 4.16 Influence of scaling on interconnect characteristics

Parameter	Sensitivity	Reduced Thickness	Constant Thickness
Scaling Parameters			
Width: w		1/S	
Spacing: s		$1 / S$	
Thickness: t		1/S	1
Interlayer oxide height: b		1/S	
Local/Scaled Interconnect Characteristics			
Length: l		1/S	
Unrepeated wire RC delay	$l^{2} t_{\text {wu }}$	1	between $1 / S, 1$
Repeated wire delay	$l t_{\text {wr }}$	$\sqrt{1 / S}$	$\begin{aligned} & \text { between } \\ & 1 / S, \sqrt{1 / S} \end{aligned}$
Global Interconnect Charac			
Length: l		D_{c}	
Unrepeated wire RC delay	$l^{2} t_{\text {wu }}$	$S^{2} D_{\epsilon}^{2}$	between $S D_{c}^{2}, S^{2} D_{c}^{2}$
Repeated wire delay	$l t_{\text {wr }}$	$D_{c} \sqrt{S}$	$\begin{aligned} & \text { between } D_{c} \text {, } \\ & D_{c} \sqrt{S} \end{aligned}$

Observations

- Capacitance per micron is remaining constant
- About $0.2 \mathrm{fF} / \mu \mathrm{m}$
- Roughly $1 / 10$ of gate capacitance
- Local wires are getting faster
- Not quite tracking transistor improvement
- But not a major problem
- Global wires are getting slower
- No longer possible to cross chip in one cycle

ITRS

- Semiconductor Industry Association forecast
- Intl. Technology Roadmap for Semiconductors

Table 4.17	Predictions from the 2002 ITRS					
Year	2001	2004	2007	2010	2013	2016
Feature size (nm)	130	90	65	45	32	22
$V_{D D}(\mathrm{~V})$	$1.1-1.2$	$1-1.2$	$0.7-1.1$	$0.6-1.0$	$0.5-0.9$	$0.4-0.9$
Millions of transistors/die	193	385	773	1564	3092	6184
Wiring levels	$8-10$	$9-13$	$10-14$	$10-14$	$11-15$	$11-15$
Intermediate wire pitch (nm)	450	275	195	135	95	65
Interconnect dielectric constant	$3-3.6$	$2.6-3.1$	$2.3-2.7$	2.1	1.9	1.8
I/O signals	1024	1024	1024	1280	1408	1472
Clock rate (MHz)	1684	3990	6739	11511	19348	28751
FO4 delays/cycle	13.7	8.4	6.8	5.8	4.8	4.7
Maximum power (W)	130	160	190	218	251	288
DRAM capacity (Gbits)	0.5	1	4	8	32	64

Scaling Implications

- Improved Performance
- Improved Cos \dagger
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Cost Improvement

- In 2003, \$0.01 bought you 100,000 transistors
- Moore's Law is still going strong

Interconnect Woes

- SIA made a gloomy forecast in 1997
- Delay would reach minimum at 250-180 nm, then get worse because of wires
- But...

[SIA97]

Interconnect Woes

- SIA made a gloomy forecast in 1997
- Delay would reach minimum at 250-180 nm, then get worse because of wires
- But...
- Misleading scale
- Global wires
- 100 kgate blocks 0

Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
- Just as off-chip memory latencies were tolerated

Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
- If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
- "Business as usual will not work in the future."
- Intel stock dropped 8\% on the next day
- But attention to power is increasing

Static Power

- $V_{D D}$ decreases
- Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- V_{\dagger} must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
- Bigger design teams
- Up to 500 for a high-end microprocessor
- More expensive design cost
- Pressure to raise productivity
- Rely on synthesis, IP blocks
- Need for good engineering managers

Physical Limits

- Will Moore's Law run out of steam?
- Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
- Dynamic power
- Subthreshold leakage, tunneling
- Short channel effects
- Fabrication costs
- Electromigration
- Interconnect delay
- Rumors of demise have been exaggerated

VLSI Economics

- Selling price $S_{\text {total }}$
- $S_{\text {total }}=C_{\text {total }} /(1-m)$
- $m=$ profit margin
- $C_{\text {total }}=$ total cost
- Nonrecurring engineering cost (NRE)
- Recurring cos \dagger
- Fixed cost

NRE

- Engineering cos \dagger
- Depends on size of design team
- Include benefits, training, computers
- CAD tools:
- Digital front end: \$10K
- Analog front end: $\$ 100 \mathrm{~K}$
- Digital back end: $\$ 1 \mathrm{M}$
- Prototype manufacturing
- Mask costs: $\$ 500 \mathrm{k}-1 \mathrm{M}$ in 130 nm process
- Test fixture and package tooling

Recurring Costs

- Fabrication
- Wafer cost / (Dice per wafer * Yield)
- Wafer cost: \$500 - \$3000
- Dice per wafer: $N=\pi\left[\frac{r^{2}}{A}-\frac{2 r}{\sqrt{2 A}}\right]$
- Yield: $Y=e^{-A D}$
- For small $A, Y \approx 1$, cost proportional to area
- For large $A, Y \rightarrow 0$, cost increases exponentially
- Packaging
- Tes \dagger

Fixed Costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis

Example

- You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- Because you are smarter than everyone else, you can get away with a small team in just two years:
- Seven digital designers
- Three analog designers
- Five support personnel

Solution

- Digital designers:
- salary
- overhead
- computer
- CAD tools
- Total:
- Analog designers
- salary
- overhead
- computer
- CAD tools
- Total:
- Support staff
- salary
- overhead
- computer
- Total:
- Fabrication
- Back-end tools:
- Masks:
- Total:
- Summary

Solution

- Digital designers:
- \$70k salary
- \$30k overhead
- \$10k computer
- \$10k CAD tools
- Total: $\$ 120 k$ * $7=\$ 840 k$
- Analog designers
- \$100k salary
- \$30k overhead
- \$10k computer
- \$100k CAD tools
- Total: $\$ 240 k$ * $3=\$ 720 k$
- Support staff
- \$45k salary
- \$20k overhead
- \$5k computer
- Total: $\$ 70 \mathrm{k} * 5=\$ 350 \mathrm{k}$
- Fabrication
- Back-end tools: \$1M
- Masks: \$1M
- Total: \$2M / year
- Summary
- 2 years @ \$3.91M / year
- \$8M design \& prototype

Cost Breakdown

- New chip design is fairly capital-intensive
- Maybe you can do it for less?

- Suggest to keep forging ahead:
- Theoretical input to your project?
- Website update?
- Schedule?
- Simulation Lab on Thursday
- Prepare 1 slide "update" for next time
- For today:
- Informal verbal report
- Any key questions/issues?
- (3-5 min. max)

