Today's agenda (28-JAN-2010)

- Will check your web page (links), which should include
- Block diagram
- Acronym (what it is called)
- Schedule outline
- Description paragraph
- To be augmented with table of specifications
- Comings and goings

Suggested Milestones

- Specification Review [Feb 15]
- Complete schematics
- Block diagram
- Table of key parameters
- Design Readiness Review [March 1-14]
- Design simulations, iteration
- Confirmation of key parameters
- Begin Layout [March 15]
- Floorplanning
- All April to complete layout
- LVS checks during hierarchy build
- Post layout simulations
- Final Design Review [early May]
- Compile documentation, hold review
- Final confirmation of key parameters

Suggested Template

Year 1 Development Schedule for Integrated x-ray Readout/DAQ																																				
		29-dec-09trGSV																																		
			Dec			Jan			Feb			March			April		May			June			Juig				Aug			Sept						
	Task	Subtask	1	23	34	1	23	4	12	23	4	12	3	41	2	3	4 1	2	34	1	2	34	4	2	3	41	2	3	4	2	3	4				
1	350ps bunch separation demonstrator	optical comp acquisition																																		
		bench commission																																		
		acquire photodetectors																																		
		CDR																																		
		simple DAQ USB (exist)																																		
		PDIPRO interface board																																		
		Specs verificationtTDR																																		
		commission																																		
		Measurements																																		
		XMC readout design																																		
		cPCl cratelCPU acq.																																		
		CDR	,																																	
2	Fast DAQ	Fast link fabrication																																		
	system	firmware development																																		
		software development												\%																						
		Readiness Review												+																						
		integrationitest																																		
		Speos confirm																																		
		Preliminary design																																		
		CDR	,																																	
		Detailed simulations																																		
		Layout																																		
3	ps2 ASIC	Design Review																					,													
3	ps2 ASIL	MOSIS fabrication																																		
		Eval board fab + test																																		
		Integrated module design																																		
		Integrated module fab																																		
		Integration + operation																																		
		first beam																																		
		Specs confirm																																		
		design + simulation																																		
		prototype eval																																		
4	Sensor 1	CDR																																		
		detailed simulations																																		
		Design Review																																		
		fabrication																																		

MOS Structure

MOS Review

- Transistor gate, source, drain all have capacitance
- I = C ($\Delta \mathrm{V} / \Delta t) \rightarrow \Delta t=(C / I) \Delta V$
- Capacitance and current determine speed
- MOS symbol

MOS Capacitor

- Gate and body form MOS capacitor
- Operating modes
- Accumulation
- Depletion
- Inversion

Terminal Voltages

- Mode of operation depends on V_{g}, V_{d}, V_{s}
- $V_{g s}=V_{g}-V_{s}$
- $V_{g d}=V_{g}-V_{d}$
- $V_{d s}=V_{d}-V_{s}=V_{g s}-V_{g d}$

- Source and drain are symmetric diffusion terminals
- By convention, source is terminal at lower voltage
- Hence $V_{d s} \geq 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
- Cutoff
- Linear
- Saturation

nMOS Cutoff

- No conducting channel
- $I_{d s}=0$

nMOS Linear

- Channel forms
- Current flows from d to s
- e^{-}from s to d
- $I_{d s}$ increases with $V_{d s}$
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- $I_{d s}$ independent of $V_{d s}$
- We say current saturates
- Similar to current source

nMOS I-V Summary

- Shockley $1^{\text {st }}$ order transistor models

$$
I_{d s}=\left\{\begin{array}{ccc}
0 & V_{g s}<V_{t} & \text { cutoff } \\
\beta\left(V_{g s}-V_{t}-\frac{V_{d s}}{2}\right) V_{d s} & V_{d s}<V_{d s a t} & \text { linear } \\
\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2} & V_{d s}>V_{d s a t} & \text { saturation }
\end{array}\right.
$$

Example

- As an example, consider the $0.6 \mu \mathrm{~m}$ process from AMI Semiconductor
- $t_{\text {ox }}=100 \AA$
- $\mu=350 \mathrm{~cm}^{2} / V^{*} \mathrm{~s}$
$-V_{+}=0.7 \mathrm{~V}$
- Plot $I_{d s}$ vs. $V_{d s}$
$-V_{g s}=0,1,2,3,4,5$
- Use $W / L=4 / 2 \lambda$

$$
\begin{aligned}
& \text { (2.5 } \\
& \beta=\mu C_{o x} \frac{W}{L}=(350)\left(\frac{3.9 \bullet 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}}\right)\left(\frac{W}{L}\right)=120 \frac{W}{L} \mu A / V_{12}^{2}
\end{aligned}
$$

pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_{p} is determined by holes
- Typically 2-3x lower than that of electrons μ_{n}
- $120 \mathrm{~cm}^{2} / \mathrm{V}^{*} \mathrm{~s}$ in AMI $0.6 \mu \mathrm{~m}$ process
- Thus pMOS must be wider to provide same current
- As a starting point, assume $\mu_{n} / \mu_{p}=2$

Current-Voltage Relations Long-Channel Device

Second Order Effect

Linear Region: $\mathbf{V}_{\mathrm{DS}} \leq \mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathbf{T}}$

$$
I_{D}=k_{n}^{\prime} \frac{W}{L}\left(\left(V_{G S}-V_{T}\right) V_{D S^{-}}-\frac{V_{D S^{2}}}{2}\right)
$$

with

$$
k_{n}^{\prime}=\mu_{n} C_{o x}=\frac{\mu_{n} \varepsilon_{o x}}{t_{o x}} \quad \begin{aligned}
& \text { Process Transconductance } \\
& \text { Parameter }
\end{aligned}
$$

Saturation Mode: $\mathrm{V}_{\mathrm{DS}} \geq \mathbf{V}_{\mathrm{GS}}-\mathbf{V}_{\mathbf{T}}$

$$
I_{D}=\frac{k^{\prime}}{2} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

I_{D} versus $V_{D S}$

Long Channel

Short Channel

CMOS Inverter

Two Inverters

Share power and ground

Abut cells

CMOS Inverter as Switch

DC Response

- DC Response: $V_{\text {out }}$ vs. $V_{\text {in }}$ for a gate
- Ex: Inverter
- When $V_{\text {in }}=0 \quad->\quad V_{\text {out }}=V_{D D}$
- When $V_{\text {in }}=V_{D D} \quad \rightarrow \quad V_{\text {out }}=0$
- In between, $\mathrm{V}_{\text {out }}$ depends on transistor size and current
- By KCL, must settle such that

$$
I_{d s n}=\left|I_{d s p}\right|
$$

- We could solve equations
- But graphical solution gives more insight $\mathrm{V}_{\text {in }}$ _

Transistor Operation

- Current depends on region of transistor behavior
- For what $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are $n M O S$ and $p M O S$ in
- Cutoff?
- Linear?
- Saturation?

DC Transfer Curve

- Transcribe points onto $\mathrm{V}_{\text {in }}$ vs. $\mathrm{V}_{\text {out }}$ plot

Operating Regions

- Revisit transistor operating regions

Region	nMOS	pMOS
A	Cutoff	Linear
B	Saturation	Linear
C	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Beta Ratio

- If $\beta_{p} / \beta_{n} \neq 1$, switching point will move from $V_{D D} / 2$
- Called skewed gate
- Other gates: collapse into equivalent inverter

Noise Margins

- How much noise can a gate input see before it does not recognize the input?

Logic Levels

- To maximize noise margins, select logic levels at

Logic Levels

- To maximize noise margins, select logic levels at
- unity gain point of $D C$ transfer characteristic

For next time

- Will check your web page (links), which should include
- Block diagram
- Acronym (what it is called)
- Schedule outline
- Description paragraph
- To be augmented with table of specifications
- Start building what can in Cadence - will start on simulation from next week

