Hawaii Activities

- Bandwidth/sampling analysis of fast PMT pulses
- Test structures for 3rd ASIC submission

Juaquin Anderson Matt Andrew Tom Browder Michael Cooney Xin Gao James Kennedy Luca Macchiarulo **Kurtis Nishimura Louis Ridley** Jamal Rorie Larry Ruckman **Gary Varner**

Analysis of Fast PMT Pulses

 Single photon test waveforms have been previously shown from the Hamamatsu SL10.

Setup:

ADC Distributions

- Nagoya: larger gain for the external amplifier
- Hawai'i: recorded every waveform (even if no signal)

ADC vs TDC Distributions

- Nagoya: time-walk correction performed
 - time is measured by CFD
- Hawai'i: no time-walk correction performed
 - time is measured by interpolating the leading edge threshold crossing using waveform data
 - Threshold set to 50% of the peak voltage for each event

TDC Distributions (Single Photon Timing)

- Nagoya & Hawai'i measurement agree with each other
- Hawai'i has less of a tail in distribution
 - Less overall TDC RMS

Updated Analysis

- Previous analysis used waveforms "as-is" from the scope.
- What happens if we have lower bandwidth and/or a lower sampling rate.
 - To test, for example, expected performance from a waveform digitizing ASIC.
- New analysis steps:
 - 1. Take FFT of the raw scope waveform
 - 2. Apply low pass filter with varying 3dB points to simulate bandwidth limitations.
 - In this analysis, we use a 4th order Butterworth filter, but we can explore others, for example simulated frequency response of a waveform digitizing ASIC.
 - 3. Transform back to the time domain
 - 4. Downsample to simulate lower sampling rate.
 - We take every Nth point, with initial offset randomly chosen from 0 to N-1. We can make this more sophisticated as well, but interesting to start.
 - 5. Perform timing measurement similar to before.
 - We find the time to reach 30% of the measured peak voltage.

Sample Spectra, Waveforms

Single Photon Timing Resolutions

- Double Gaussian fits to the distribution of calculated times (using 30% of peak voltage method)
- Time resolution is σ of the narrow Gaussian.
- Example fits @ 10 GSa/s downsampling:

Analysis Summary & Future Work

- Preliminary analysis results indicate for a fast PMT (in this case the HPK SL10, single photon σ_t ~35 ps), the important part of the signal for timing is all \lesssim 700 MHz.
 - (Provided that the sampling rate is adequate.)
- This type of analysis could be useful to determine optimal or adequate bandwidths and/or sampling rates.
- As needed, can implement:
 - More realistic responses
 - More sophisticated downsampling estimates

Hawaii Contributions for 3rd ASIC Submission

- Test structures planned for inclusion in the next ASIC submission:
 - Matt Andrew: Ring oscillator, high speed flip flop
 - Wei Cai: Charge sensitive amplifier
 - Mike Cooney: High speed LVDS transceiver
 - Kurtis Nishimura: Analog switch into waveform sampling array (high bandwidth)
 - Larry Ruckman: Analog switch for sampling cell storage cell
- Design review: tentatively April 28th.