Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Notes for today:

- 1) Review of Quiz 2
- 2) Assignment 5 (Mastering Physics) online and separate, written problems due Wednesday
- 3) Review all of Chap 21-24 for Midterm
- 4) Schedule for next week:
 - 1) Monday: holiday
 - 2) Wednesday: review
 - 3) Friday: Midterm #1

Problem 1

Roster	ID:	

Physics 272. Practice Midterm I There are 4 problems. Each is assigned 25 points. Show your work.

Problem 1: 25 points

Two equal charges of 3.0 μ C are on the y-axis. One is at the origin and the other is at y = 6 m. A third charge $q_3 = 2.0\mu$ C is on the x-axis at x = 8 m.

Find the electric field at the location of q_3 . (Hint: first draw a diagram)

Checking in?

For a point charge, if $r \rightarrow 0$ E=?

- A)0
- B) 49
- C) Infinity
- D) Sqrt(-1)
- E) None of the above

Checking in?

For a point charge, if $r \rightarrow 0 E= ?$

- A) 0
- B) 49
- C) Infinity
- D) Sqrt(-1)
- E) None of the above

However, if try to draw the vector, it doesn't point anywhere.

This is an example of a singularity. You can think of the electric field for q_3 only being valid for locations not exactly at its location (finite for finite distance from the charge).

Electric Field

E for point charge q?

Can calculate:

$$E = \frac{F_{q_0}}{q_0} = \frac{\frac{|qq_0|}{4\pi\varepsilon_0 r^2}}{q_0} = \frac{|q|}{4\pi\varepsilon_0 r^2}$$

magnitude

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r}$$

magnitude and direction.

r defined from q!

Example: a.) E at P?

Problem 2

Problem 2: 25 points

Suppose a non-conducting sphere of radius R has a non-uniform charge density $\rho(r) = B/r$ inside.

- (a) Draw a sketch of this sphere.
- (b) Find the electric field inside the sphere. (show the Gaussian surface used on your sketch).
- (c) Find the electric field outside of the sphere. (show the Gaussian surface used on your sketch).

Uniform charged sphere

• Outside sphere: (r > a)

$$E = \frac{\rho a^3}{3\varepsilon_0 r^2}$$

- Inside sphere: (r < a)
 - We still have spherical symmetry centered on the center of the sphere of charge.
 - Therefore, choose Gaussian surface = sphere of radius r

Gauss'
$$\oint \vec{E} \cdot d\vec{A} = 4\pi r^2 E = \frac{q}{\varepsilon_0}$$
But, $q = \frac{4}{3}\pi r^3 \rho$

Thus:
$$E = \frac{\rho}{3\varepsilon_0} r$$

Problem 3

Problem 3: 25 points

A ring of radius 5 cm is in the y-z plane with its center at the origin. The ring carries a uniform charge of 10 nC. A small particle of mass m = 10 mg and charge $q_0 = 5$ nC is placed at x = 12 cm and released.

- (a) What is the initial potential energy of the particle?
- (b) What is the speed of the particle when it is a great distance away from the ring?

Electrical Potential

Review:

 $W_{a \to b}$ = work done by force in going from a to b along path.

$$W_{a \to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = \int_{a}^{b} q\vec{E} \cdot d\vec{l}$$

$$\Delta U = U_b - U_a = -W_{a \to b} = -\int_a^b q\vec{E} \bullet d\vec{l}$$

U = potential energy

$$\Delta V = V_b - V_a = \frac{\Delta U}{q} = \frac{U_b - U_a}{q} = -\frac{W_{a \to b}}{q} = -\int_a^b \vec{E} \bullet d\vec{l}$$

- · Potential difference is the negative of the work done per unit charge by the electric field as the charge moves from a to b.
- Only changes in V are important; can choose zero at any point. Let V_a = 0 at a = infinity and $V_b \to V$, then:

$$V = -\int_{\infty}^{r} \vec{E} \bullet d\vec{l}$$

V = electric potential

Problem 4a

Problem 4: 25 points

- (a) [5 pts] If the charge on an isolated spherical conductor is doubled, its capacitance quadrupules, doubles, drops by half, remains the same. ? Explain.
 - A) quadruples
 - B) doubles
 - C) Drops by half
 - D) Remains the same

Problem 4a

Problem 4: 25 points

- (a) [5 pts] If the charge on an isolated spherical conductor is doubled, its capacitance quadrupules, doubles, drops by half, remains the same. ? Explain.
 - A) quadruples
 - B) doubles
 - C) Drops by half
 - D) Remains the same

None of the expressions for capacitance depends on charge. Capacitance only depends upon geometry (and possibly a dielectric)

Capacitor Summary

- A Capacitor is an object with two spatially separated conducting surfaces.
- The definition of the capacitance of such an object is:

$$C \equiv \frac{Q}{V}$$

• The capacitance depends on the geometry:

Parallel Plates

$$C = \frac{A\varepsilon_0}{d}$$

Cylindrical

$$C = \frac{2 \pi \varepsilon_0 L}{\ln \left(\frac{b}{a}\right)}$$

Spherical

$$C = \frac{4\pi\varepsilon_0 ab}{b - a}$$

Problem 4b

(b) [5 pts] Two charges of the same magnitude and sign are placed a certain distance apart. At what points in space is the electric field zero (draw a sketch)?

Field Lines From Two Like Charges

 There is a zero halfway between the two charges

• r >> a: looks like the field of point charge (+2q) at origin

Problem 4c

(c) [10 pts] One electron is accelerated through a potential difference of 10 kV. Another electron is accelerated through a potential difference of 40 kV. What is the ratio of the final velocities of the two electrons?

Conservation of Energy of a particle from Phys 170

- Kinetic Energy (K) $K = \frac{1}{2}mv^2$ non-relativistic
- Potential Energy (U) U(x,y,z)
 - determined by force law
- for Conservative Forces: K+U is constant
 - total energy is always constant
- examples of conservative forces
 - gravity; gravitational potential energy
 - springs; coiled spring energy (Hooke's Law): $U(x) = \frac{1}{2}kx^2$
 - electric; electric potential energy (today!)
- examples of non-conservative forces (heat)
 - friction
 - viscous damping (terminal velocity)

Problem 4d

(d) [5 pts] The electrostatic potential is measured to be $V(x, y, z) = 4|x|+V_0$. The charge distribution responsible for this potential is a a point charge at the origin, a uniformly charged thread in the x-y plane, a uniformly charged sheet in the y-z plane, a uniformly charged sphere of radius $1/\pi$ at the origin (pick one).

- A) A point charge at Origin
- B) Uniformly charged thread in x-y plane
- C) Uniformly charged sheet in y-z plane
- D) Uniformly charged sphere of rad 1/pi at Origin

Problem 4d

(d) [5 pts] The electrostatic potential is measured to be $V(x, y, z) = 4|x|+V_0$. The charge distribution responsible for this potential is a a point charge at the origin, a uniformly charged thread in the x-y plane, a uniformly charged sheet in the y-z plane, a uniformly charged sphere of radius $1/\pi$ at the origin (pick one).

- A) A point charge at Origin
- B) Uniformly charged thread in x-y plane
- C) Uniformly charged sheet in y-z plane
- D) Uniformly charged sphere of rad 1/pi at Origin

Take the gradient of the potential to get the expression for the Electric Field in this case. In this case it is a constant, which is as seen in the next slide. (point charge/sphere for points outside $\sim 1/r^2$, line charge $\sim 1/r$)

Gauss' Law: Help for the Homework Problems

Midterm

Gauss' Law is ALWAYS VALID!

$$\varepsilon_0 \oint \vec{E} \bullet d\vec{A} = q_{enclosed}$$

- What Can You Do With This?
 If you have (a) spherical, (b) cylindrical, or (c) planar symmetry AND:
 - If you know the charge (RHS), you can calculate the electric field (LHS)
 - If you know the field (LHS, usually because E=0 inside conductor), you can calculate the charge (RHS).
 - Spherical Symmetry: Gaussian surface = sphere of radius r

LHS:
$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = 4\pi\varepsilon_0 r^2 E$$
RHS: $q = \text{ALL charge inside radius } r$

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

• Cylindrical symmetry: Gaussian surface = cylinder of radius r

LHS:
$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 2\pi r L E$$

RHS: $q = \text{ALL charge inside radius } r$, length L
 $E = \frac{\lambda}{2\pi \varepsilon_0 r}$

• Planar Symmetry: Gaussian surface = cylinder of area A

LHS:
$$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = \varepsilon_0 2AE$$
RHS: $q = \text{ALL charge inside cylinder} = \sigma A$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Reminder for Midterm

- Closed book, closed notes
- One 3" x 5" note card, calculator
- Office Hours usually after this class (9:30 10:00) in WAT214 today (1-1:30pm)
- Will start <= 8:30am find a seat, be ready

