
Electrical Potential
Review:

Wa → b = work done by force in going from a to b along path.
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U = potential energy

V = electric potential

• Potential difference is the negative of the work done per unit
charge by the electric field as the charge moves from a to b.
• Only changes in V are important; can choose zero at any point.

Let Va = 0 at a = infinity and Vb → V, then:
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Electrical Potential

Two ways to find V at any point in space:
• Sum or Integrate over charges:
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Example of integrating over distribution:
• line of charge
• ring of charge
• disk of charge

Be able to do these.



Electrical Potential
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For an infinitesimal step:

• Determine V from E:

Determining E from V:

Cases:
• θ = 0:         dV = E dl     (maximum)
• θ = 90o:      dV = 0
• θ = 180o:     dV = -E dl

Can write:
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directional derivative

dV depends on direction

Example: V due to spherical charge distribution.



Potential Gradient
Take step in x direction: (dy = dz = 0)
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gradient operator

Gradient of V points in the direction that V increases the fastest
with respect to a change in x, y, and z.

E points in the direction that V decreases the fastest.
E perpendicular to equilpotential lines.

partial derivative



Potential Gradient
Example: charge in uniform E field 
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V = U/q = Ey
where V is taken as 0 at y = 0. 
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Given E or V in some region of space, 
can find the other.

Cylindrical and spherical symmetry cases:
For E radial case and r is distance

from point (spherical) or axis 
(cylindrical):
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Example: E of point charge:
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The electric Potential V in a region of space is given by 
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Derive an expression for the electric field E at any point in this region 

V = const?



This graph shows the electric 
potential at various points 
along the x-axis.

At which point(s) is the electric field zero?

A               B                C               D

Example 1:



This graph shows the electric 
potential at various points 
along the x-axis.

At which point(s) is the electric field zero?

A               B                C               D

Example 1:



The electric potential in a region of space is given by

The x-component of the electric field Ex at x = 2 is

(a) Ex = 0 (b) Ex > 0 (c) Ex < 0
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Example 2



The electric potential in a region of space is given by

The x-component of the electric field Ex at x = 2 is

(a) Ex = 0 (b) Ex > 0 (c) Ex < 0
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We know V(x) “everywhere”

To obtain Ex “everywhere”, use
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CAPACITOR
• A capacitor is device formed with two or 
more separated conductors that store charge
and electric energy.

• Consider any two conductors and we put 
+Q on a and –Q on b. Conductor a has constant
Va and conductor b has constant Vb , then   

• The electric field is proportional to the charges ±Q. If we double the
charges ±Q, the electric field doubles. Then the voltage difference is
Va-Vb proportional to the charge.  This proportionality depends on
size, shape and separation of the conductors.
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Y&F fig. 24.1



• If we call this constant, Capacitance, C, 
and the voltage difference, V= Va-Vb, then,

• Capacitance, depends on the geometry of the
two conductors (size, shape, separation) and capacitance is always
a positive quantity by its definition (voltage difference and charge
of + conductor)

• UNITs of capacitance, Coulomb/Volts or Farads, after Michael Faraday

V
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CAPACITOR, continued



Example:  
Parallel Plate Capacitor

• Calculate the capacitance.  We 
assume +σ, -σ charge densities 
on each plate with potential 
difference V:
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QC ≡

• Need Q:

• Need V: from def’n:

– Use Gauss’ Law to find E
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Recall: Two Infinite Sheets
(into screen)

• Field outside the sheets is zero

• Gaussian surface encloses 
zero net charge
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• Field between sheets is not zero:

• Gaussian surface encloses 
non-zero net charge
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Example: Parallel Plate Capacitor
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• Calculate the capacitance:
• Assume +Q, -Q on plates with 

potential difference V.

• As hoped for, the capacitance of this capacitor 
depends only on its geometry (A,d).

• Note that C ~ length; this will always be the case!
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Cylindrical Capacitor Example

• Calculate the capacitance:

• Assume +Q, -Q on surface of 
cylinders with potential difference V.
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• Gaussian surface is cylinder of 
radius r  (a < r < b) and length L
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If we assume that inner cylinder has +Q, then the potential V is 
positive if we take the zero of potential to be defined at r = b:
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Spherical Capacitor Example
• Suppose we have 2 concentric 

spherical shells of radii a and b
and charges +Q and –Q.

• Question: What is the capacitance?
• E between shells is same as a point 

charge +Q.  (Gauss’s Law):
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Capacitor Summary

• A Capacitor is an object with two spatially separated conducting
surfaces.

• The definition of the capacitance of such an object is: 

V
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• The capacitance depends on the geometry :
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For next time

• HW #3 get cracking (Hints posted)

• Office Hours immediately after this class 
(9:30 – 10:00) in WAT214

• Don’t fall behind – next 2nd Quiz Friday


