Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Quiz today
2) Written problems: $21.96,22.6,22.58,22.30$
3) Complete Chapter 22
(all this information on web page)

Gauss's Law and Electric Flux

Preview

Gauss's Law relates number of E field lines entering and leaving a surface to the net charge inside the surface.

Consider imaginary spheres centered on:
a.) $+q$ (blue)
b.) $-q$ (red)
c.) midpoint (yellow)

Number of lines exiting:
a.) (blue)

Electric Flux

Flux:
Let's quantify previous discussion about field-line "counting"
Define: electric flux Φ_{E} through the closed surface S

$$
\Phi_{E}=\oint_{S} \vec{E} \bullet d \vec{A}
$$

$$
\Phi_{E} \equiv \oint_{S} \vec{E} \bullet d \vec{A}
$$

-What does this new quantity mean?

- The integral is over a CLOSED SURFACE
- Since $\vec{E} \bullet d \vec{A}$ is a SCALAR product, the electric flux is a SCALAR quantity
- The integration vector $d \vec{A}$ is normal to the surface and points OUT of the surface. $\vec{E} \bullet d \vec{A}$ is interpreted as the component of E which is NORMAL to the SURFACE
- Therefore, the electric flux through a closed surface is the sum of the normal components of the electric field all over the surface.
- The sign matters!!

Pay attention to the direction of the normal component as it penetrates the surface... is it "out of" or "into" the surface?

- "Out of" is "+" "into" is "-"

Electric Flux

Special case: uniform \vec{E} perpendicular to plane surface A.
$\Phi_{E} \equiv \oint_{S} \vec{E} \bullet d \vec{A}=\oint_{S} E d A \cos \theta=E \oint_{S} d A=E A$

Another: uniform E at angle to plane surface A.

How to think about flux

We will be interested in net
flux in or out of a closed surface like this box

This is the sum of the flux through each side of the box

- consider each side separately

Let E-field

- then $\overrightarrow{\boldsymbol{E}}$ and \vec{A} are parallel and

$$
\vec{E} \bullet \vec{A}=|\vec{E}| w^{2}
$$

Look at this from on top

- down the z-axis

How to think about flux

Consider flux through two

surfaces that "intercept different
numbers of field lines"

- first surface is side of box from previous slide
- Second surface rotated by an angle $\boldsymbol{\theta}$

$$
E \text {-field surface area } \quad E \cdot A
$$

case 1

case 2

case 2

Wire loops (1) and (2) have the same length and width, but differences in shape.

Example 2:

A cube is placed in a uniform electric field. Find the flux through the bottom surface of the cube.

$$
\begin{aligned}
& \text { a) } \Phi_{\text {bottom }}<0 \\
& \text { b) } \boldsymbol{\Phi}_{\text {bottom }}=0 \\
& \text { c) } \Phi_{\text {bottom }}>0
\end{aligned}
$$

Example 2:

A cube is placed in a uniform electric field. Find the flux through the bottom surface of the cube.

$$
\begin{aligned}
& \text { a) } \boldsymbol{\Phi}_{\text {bottom }}<0 \\
& \text { b) } \boldsymbol{\Phi}_{\text {bottom }}=0 \\
& \text { c) } \boldsymbol{\Phi}_{\text {bottom }}>0
\end{aligned}
$$

Key here is flux through the bottom (coming into box bottom = -ve [<0] flux outward from bottom)

Through top surface flux $\boldsymbol{\Phi}_{\text {top }}>0$

Exercise 3

- Imagine a cube of side a positioned in a region of constant electric field as shown
-Which of the following statements about the net electric flux Φ_{E} through the surface of this cube is true?
$\begin{array}{lll}\text { (a) } \Phi_{E}=0 & \text { (b) } \Phi_{E} \propto 2 a^{2} & \text { (c) } \Phi_{E} \propto 6 a^{2}\end{array}$

Exercise 3

- Imagine a cube of side a positioned in a region of constant electric field as shown
-Which of the following statements about the net electric flux Φ_{E} through the surface of this cube is true?

(a) $\Phi_{E}=0$
(b) $\Phi_{E} \propto 2 a^{2}$
(c) $\Phi_{E} \propto 6 a^{2}$
- The electric flux through the surface is defined by: $\Phi \equiv \oint \vec{E} \bullet d \vec{A}$
- $\oint \vec{E} \bullet d \vec{A}$ is ZERO on the four sides that are parallel to the electric field.
- $\oint \vec{E} \bullet d \vec{A}$ on the bottom face is negative. (dA is out; E is in)
- $\oint \vec{E} \bullet d \vec{A}$ on the top face is positive. (dA is out; \boldsymbol{E} is out)

Therefore, the total flux through the cube is:

$$
\Phi \equiv^{\sim} \vec{E} \bullet A=\Phi_{\text {sides }}+\Phi_{\text {bottom }}+\Phi_{\text {top }}=0-E a^{2}+E a^{2}=0
$$

Exercise 4

- Consider 2 spheres (of radius R and $2 R$) drawn around a single charge as shown.
- Which of the following statements about the net electric flux through the 2 surfaces $\left(\Phi_{2 R}\right.$ and $\left.\Phi_{R}\right)$ is true?

$\begin{array}{ll}\text { (a) } \Phi_{R}<\Phi_{2 R} & \text { (b) } \Phi_{R}=\Phi_{2 R}\end{array}$
(c) $\Phi_{R}>\Phi_{2 R}$

Exercise 4

- Consider 2 spheres (of radius R and $2 R$) drawn around a single charge as shown.
- Which of the following statements
about the net electric flux through the
2 surfaces $\boldsymbol{\Phi}_{2 \boldsymbol{R}}$ and $\boldsymbol{\Phi}_{\boldsymbol{R}}$ is true?

$$
\text { (a) } \Phi_{R}<\Phi_{2 R} \quad \text { (b) } \Phi_{R}=\Phi_{2 R} \quad \text { (c) } \Phi_{R}>\Phi_{2 R}
$$

- Look at the lines going out through each circle -- each circle has the same number of lines.
-The electric field is different at the two surfaces, because E is proportional to $1 / r^{2}$, but the surface areas are also different. The surface area of a sphere is proportional to r^{2}.
- Since flux $=\oint_{S} \vec{E} \bullet d \vec{A}$, the r^{2} and $1 / r^{2}$ terms will cancel, and the two circles have the same flux!
- There is an easier way. Gauss' Law states the net flux is proportional to the NET enclosed charge. The NET charge is the SAME in both cases.

More weekend fun?

- HW \#2 \rightarrow some parts don't need Gauss' Law
- Office Hours immediately after this class (9:30-10:00) in WAT214 (? 1-1:30 MWF)
- Don't fall behind - first Quiz Now!

