Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

- 1) Quiz today
- 2) Written problems: 21.96, 22.6, 22.58, 22.30
- 3) Complete Chapter 22 (all this information on web page)

Gauss's Law and Electric Flux

Preview

Gauss's Law relates number of E field lines entering and leaving a surface to the net charge inside the

surface.

Consider imaginary spheres centered on:

- a.) +q (blue)
- b.) -q (red)
- c.) midpoint (yellow)

Number of lines exiting:

- a.) (blue)
- b.) -q (red) ______

24

c.) midpoint (yellow)

More on Gauss's Law later.

Electric Flux

Flux:

Let's quantify previous discussion about field-line "counting"

Define: electric flux Φ_E through the closed surface S

$$\Phi_E \equiv \oint_S \vec{E} \bullet d\vec{A}$$

"S" is surface of the box

Electric Flux

$$\Phi_E \equiv \oint_S \vec{E} \cdot d\vec{A}$$

·What does this new quantity mean?

- · The integral is over a CLOSED SURFACE
- Since $\vec{E} \bullet d\vec{A}$ is a SCALAR product, the electric flux is a SCALAR quantity
- The integration vector $d\vec{A}$ is normal to the surface and points OUT of the surface. $\vec{E} \cdot d\vec{A}$ is interpreted as the component of E which is NORMAL to the SURFACE
- Therefore, the electric flux through a closed surface is the sum of the normal components of the electric field all over the surface.
- The sign matters!!

 Pay attention to the direction of the normal component as it penetrates the surface... is it "out of" or "into" the surface?
- "Out of" is "+" "into" is "-"

Electric Flux

Special case: uniform E perpendicular to plane surface A.

$$\Phi_E \equiv \oint_S \vec{E} \cdot d\vec{A} = \oint_S E \, dA \quad \cos \theta = E \oint_S dA = EA$$
constant

Another: uniform E at angle to plane surface A.

How to think about flux

- We will be interested in net flux in or out of a closed surface like this box
- This is the sum of the flux through each side of the box
 - consider each side separately

- Let E-field point in y-direction
 - then \vec{E} and \vec{A} are parallel and $\vec{E} \cdot \vec{A} = |\vec{E}| w^2$

$$\vec{E} \bullet \vec{A} = \mid \vec{E} \mid w^2$$

- Look at this from on top
 - down the z-axis

How to think about flux

- Consider flux through two surfaces that "intercept different numbers of field lines"
 - first surface is side of box from previous slide
 - Second surface rotated by an angle θ

Example 1:

5) Wire loops (1) and (2) are placed in a uniform electric field as shown. Compare the flux through the two surfaces

- a) $\Phi_{I} > \Phi_{2}$
- $b) \boldsymbol{\Phi}_{1} = \boldsymbol{\Phi}_{2}$
- c) $\Phi_1 < \Phi_2$

Wire loops (1) and (2) have the same length and width, but differences in shape.

Example 1:

5) Wire loops (1) and (2) are placed in a uniform electric field as shown. Compare the flux through the two

a)
$$\Phi_1 > \Phi_2$$
b) $\Phi_1 = \Phi_2$
c) $\Phi_1 < \Phi_2$

Wire loops (1) and (2) have the same length and width, but differences in shape.

Example 2:

A cube is placed in a uniform electric field. Find the flux through the bottom surface of the cube.

a)
$$\boldsymbol{\Phi}_{bottom} < 0$$

b)
$$\boldsymbol{\Phi}_{bottom} = 0$$

a)
$$\Phi_{bottom}$$
 < 0
b) Φ_{bottom} = 0
c) Φ_{bottom} > 0

Example 2:

A cube is placed in a uniform electric field. Find the flux through the bottom surface of the cube.

(a)
$$\boldsymbol{\Phi}_{bottom} < 0$$

b)
$$\boldsymbol{\Phi}_{bottom} = 0$$

c)
$$\Phi_{bottom} > 0$$

Key here is flux through the bottom (coming into box bottom = -ve [<0] flux outward from bottom)

Through top surface flux $\Phi_{top} > 0$

• Imagine a cube of side a positioned in a region of constant electric field as shown

Which of the following statements about the net electric flux ϕ_{r} through the surface of this cube is true?

(a)
$$\Phi_E = 0$$

(a)
$$\Phi_E = 0$$
 (b) $\Phi_E \propto 2a^2$ (c) $\Phi_E \propto 6a^2$

(c)
$$\Phi_E \propto 6a^2$$

•Imagine a cube of side a positioned in a region of constant electric field as shown

 Which of the following statements about the net electric flux Φ_r through the surface of this cube is true?

(a)
$$\Phi_E = 0$$

(a)
$$\Phi_E = 0$$
 (b) $\Phi_E \propto 2a^2$ (c) $\Phi_E \propto 6a^2$

(c)
$$\Phi_E \propto 6a^2$$

- The electric flux through the surface is defined by: $\Phi = \phi E \cdot dA$
- is ZERO on the four sides that are parallel to the electric field.
- $\oint \vec{E} \cdot d\vec{A}$ on the bottom face is negative. (dA is out; \vec{E} is in)
- $\oint \vec{E} \cdot d\vec{A}$ on the top face is positive. (dA is out; E is out)
- Therefore, the total flux through the cube is:

$$\Phi \equiv \vec{E} \bullet \vec{A} = \Phi_{sides} + \Phi_{bottom} + \Phi_{top} = 0 - Ea^2 + Ea^2 = 0$$

- Consider 2 spheres (of radius R and 2R) drawn around a single charge as shown.
 - Which of the following statements about the net electric flux through the 2 surfaces (Φ_{2R} and Φ_{R}) is true?

(a)
$$\Phi_R < \Phi_{2R}$$

(b)
$$\Phi_R = \Phi_{2R}$$

(a)
$$\Phi_R < \Phi_{2R}$$
 (b) $\Phi_R = \Phi_{2R}$ (c) $\Phi_R > \Phi_{2R}$

• Consider 2 spheres (of radius R and 2R) drawn around a single charge as shown.

– Which of the following statements about the net electric flux through the 2 surfaces ($m{arPhi}_{2R}$ and $m{arPhi}_{R}$) is true?

$$\langle a \rangle \Phi_R < \Phi_{2R}$$

(b)
$$\Phi_R = \Phi_{2R}$$

(a)
$$\Phi_R > \Phi_{2R}$$

- Look at the lines going out through each circle -- each circle has the same number of lines.
- The electric field is different at the two surfaces, because E is proportional to 1 / r 2 , but the surface areas are also different. The surface area of a sphere is proportional to r 2 .
- Since flux = $\oint_S \vec{E} \cdot d\vec{A}$, the r^2 and $1/r^2$ terms will cancel, and the two circles have the same flux!
- There is an easier way. Gauss' Law states the net flux is proportional to the NET enclosed charge. The <u>NET charge is the SAME</u> in both cases.
- But, what is Gauss' Law ??? —You'll find out next lecture!

More weekend fun?

- HW #2 → some parts don't need Gauss' Law
- Office Hours immediately after this class (9:30 - 10:00) in WAT214 (? 1-1:30 MWF)
- Don't fall behind first Quiz Now!

