Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Updates posted on web

2) Online HW, written (turn-in) problems today

3) Chapter 22 this week
 (all this information on web page)
Hints for 21.23

Don't forget the force is a vector!!!

Project both contributions from 2 +4 on the diagonal.

\[L' = \sqrt{L^2 + L^2} = \sqrt{2}L \]

\[\frac{kQ^2}{L^2} \]
Hints for 21.74

Balance forces in the vertical direction
\[T \cos \theta = \frac{kq^2}{d^2} \]

Balance forces in the horizontal direction
\[T \sin \theta = \frac{kq^2}{d^2} \]

Relate \(\theta \) to \(d \) and \(L \)
\[\sin \theta = \frac{(d/2)}{L} \]
Hints for HWK

Region I Region II Region III
Continuous Charge Distributions

Review

What if we have a distribution of charge?

- Q - charge of distribution.
- dq - element of charge.
- $d\vec{E}$ - contribution to \vec{E} due to dq.

Can write $dq = \rho \, dV$; ρ is the charge density.

\[
\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i^2} \hat{r}_i \rightarrow \frac{1}{4\pi\varepsilon_0} \int_V \frac{dq}{r^2} \hat{r} = \frac{1}{4\pi\varepsilon_0} \int_V \frac{\rho dV}{r^2} \hat{r}
\]

1. Can use calculus to determine electric fields for a few special charge distributions.
2. Method important. Know how to do.
3. For most problems, we cannot solve them analytically, but we can solve using computer methods.
Ways to Visualize the E Field
Consider the E-field of a positive point charge at the origin

- vector map
- field lines

Introduced by Michael Faraday (1791-1867)
• **Direction** of arrows indicates the *direction* of the field at each point in space
• **Length** of arrows is proportional to the *magnitude* of the field at each point in space
Rules for Field Lines

- Lines leave (+) charges and return to (-) charges
- Number of lines leaving/entering charge \propto amount of charge
- Field lines never cross

\rightarrow Tangent of line = **direction** of E at each point
\rightarrow Local density of field lines \sim **magnitude** of E at each point

graphical “trick” for visualizing E fields
6) A negative charge is placed in a region of electric field as shown in the picture. Which way does it move?

a) up b) down c) left d) right e) it doesn't move
Exercise 1:

6) A negative charge is placed in a region of electric field as shown in the picture. Which way does it move?

a) up c) left e) it doesn't move
b) down d) right
Consider a dipole (2 separated equal and opposite charges) with the y-axis as shown.

Which of the following statements about $E_x(2a,a)$ is true?

(a) $E_x(2a,a) < 0$ (b) $E_x(2a,a) = 0$ (c) $E_x(2a,a) > 0$
Exercise 2:

Consider a dipole (2 separated equal and opposite charges) with the y-axis as shown.

Which of the following statements about $E_x(2a,a)$ is true?

(a) $E_x(2a,a) < 0$
(b) $E_x(2a,a) = 0$
(c) $E_x(2a,a) > 0$

Solution: Draw some field lines according to our rules.
The Electric Dipole

What is the E-field generated by this arrangement of charges?

Calculate for a point along x-axis: $(x, 0)$

<table>
<thead>
<tr>
<th>$E_x = ???$</th>
<th>$E_y = ???$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry</td>
<td></td>
</tr>
</tbody>
</table>

$E_x(x, 0) = 0$

$E_y(x, 0) = -2 \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \sin \theta$

$\sin \theta = \frac{a}{r}$

$r^2 = x^2 + a^2$

$E_y(x, 0) = -2 \frac{1}{4\pi \varepsilon_0} \frac{q a}{(x^2 + a^2)^{3/2}}$
Electric Dipole Field Lines

- Lines leave positive charge and return to negative charge
- Field largest in space between two charges
- We derived:

\[
E_y(x, 0) = -2 \frac{1}{4\pi\varepsilon_0} \frac{q a}{(x^2 + a^2)^{3/2}}
\]

... for \(r \gg a \),

\[
E_y(x, 0) \propto \frac{1}{x^3}
\]
Field Lines From Two Like Charges

- There is a zero halfway between the two charges

- \(r >> a \): looks like the field of point charge (+2q) at origin
Example 3:

- Examine the electric field lines produced by the charges in this figure.
- Which statement is true?

(a) \(q_1\) and \(q_2\) have the same sign
(b) \(q_1\) and \(q_2\) have the opposite signs and \(|q_1| > |q_2|\)
(c) \(q_1\) and \(q_2\) have the opposite signs and \(|q_1| < |q_2|\)
Example 3:

- Examine the electric field lines produced by the charges in this figure.
- Which statement is true?

(a) \(q_1 \) and \(q_2 \) have the same sign
(b) \(q_1 \) and \(q_2 \) have the opposite signs and \(| q_1 | > | q_2 |\)
(c) \(q_1 \) and \(q_2 \) have the opposite signs and \(| q_1 | < | q_2 |\)

Field lines start from \(q_2 \) and terminate on \(q_1 \).
This means \(q_2 \) is positive; \(q_1 \) is negative; so, ... not (a)

Now, which one is bigger?

Notice along a line of symmetry between the two, that the \(E \)-field still has a positive \(y \) component. If they were equal, it would be zero;
This indicates that \(q_2 \) is greater than \(q_1 \).
Electric Dipoles

Molecules can have a permanent dipole moment. Called polar molecules. example: H_2O

Dipole moment:
\[
\vec{p} = q\vec{d}
\]

What happens to a dipole in a uniform electric field?
Electric Dipoles

Molecules can have a permanent dipole moment. Called polar molecules. example: H₂O

Dipole moment:
\[\vec{p} = q \vec{d} \]

What happens to a dipole in a uniform electric field?

No net force; but torque.
\[\text{torque} = Fd \sin \theta = qEd \sin \theta = pE \sin \theta \]

can write as:
\[\vec{\tau} = \vec{p} \times \vec{E} \] Cross product
Electric Dipoles

A dipole in a nonuniform electric field will experience a force.

Microwave ovens: dipole moment of water used to cook food.
 • Microwave frequency at natural frequency of vibration of water.
 • Molecules resonate with the rapidly oscillating electric field and absorb a large amount of energy.
 • The KE of the excited molecules is converted to thermal energy by collisions of the molecules.

Non polar molecules: no permanent dipole moment, but an electric field can cause an induced dipole moment by causing charge separation. Molecules are polarized.
Which of the following field line pictures best represents the electric field from two charges that have the same sign but different magnitudes?
Which of the following field line pictures best represents the electric field from two charges that have the same sign but different magnitudes?

A B C D

Investigate with simulation:
Electric Flux “Counts Field Lines”

\[\Phi_S = \int_S \vec{E} \cdot d\vec{A} \]

Flux through surface \(S \)

Integral of \(\vec{E} \cdot d\vec{A} \) on surface \(S \)
For next time

- Quiz on Friday
- Coulomb’s Law, Electric Fields
- Office Hours usually after this class (9:30 - 10:00) in WAT214 - not today (1-1:30pm)
- Turn in HW #1 (Hand In), HW #2 available