Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Assignment \#13 \rightarrow due Monday
2) Mirrors \& Lenses
3) Review for Final: Wednesday, May 5th

Rainbows (how they form)

(b) The paths of light rays entering the upper half of a raindrop

Rainbows

(c) Forming a rainbow. The sun in this illustration is directly behind the observer at P.

The rays of sunlight that form the primary rainbow refract into the droplets, undergo internal reflection, and

The two refractions disperse the colors.
(d) A primary rainbow is formed by rays that undergo two refractions and one internal reflection. The angle Δ is larger for red light than for violet.

Copyright 02008 Pearson Education, Inc., puolishing as Pearson Addison-Wesley.

Observer at P Angles are exaggerated for clarity. Only a primary rainbow is shown.

To the down-sun point

Hence we also see a faint secondary rainbow
(e) A secondary rainbow is formed by rays that undergo two refractions and two internal reflections. The angle Δ is larger for violet light

[^0]
717nous

Spherical Mirror

Equation
Infinite distance, $s=\infty, s^{\prime}=R / 2$ image appears at $\frac{1}{2}$ radius of curvature.

$$
\frac{1}{\infty}+\frac{1}{s^{\prime}}=\frac{2}{R}
$$

Nomenclature; focal length, $f=R / 2$, is image length when object is at infinity.

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Real image - formed by converging rays. Can be viewed on screen. Virtual image - rays do not go through. Can not be shown on screen. Concave mirror: can have real or virtual image.

Lateral Magnification: spherical mirror

Magnification $=\frac{y^{\prime}}{y}=-\frac{s^{\prime}}{s}$
Remarks; note that $y^{\prime}=-\left|y^{\prime}\right|$, since the arrow is upside down and that s, s^{\prime}, and y are positive. So the magnification by this definition is negative, since y^{\prime} is upside down.

Convex mirror

For a convex mirror, the radius of curvature is inside the mirror. We have another RULE, that when the curvature center C is on the same side of the outgoing ray, then the radius is positive. For the convex mirror we have NEGATIVE radius. Also from our rule for s^{\prime}, we observe this is negative in the above drawing. Using same recipe as we used for concave mirrors, we would find same formula:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{2}{R}
$$

Again, note s^{\prime} and R are negative

Question 1

The diagram below shows three light rays reflected off of a concave mirror. Which ray is NOT correct?

A)
B)
C)

Question 1

The diagram below shows three light rays reflected off of a concave mirror. Which ray is NOT correct?

A)
B)
C)

- Ray A goes through focal pt and is reflected parallel to the axis.
- Ray B has angle incidence $=$ angle reflection
- Ray C goes through center of sphere.
- Therefore it has normal incidence
- Should be reflected straight back

The image produced by a concave mirror of a real object is
a) always real.
b) always virtual.
c) sometimes real and sometimes virtual.
a) always real.
b) always virtual.
c) sometimes real and sometimes virtual

Is image of a real object from a concave mirror

real or virtual?

It depends on the position of the object relative to the focal point!

- Draw Rays or..
- $1 / s^{\prime}=1 / f-1 / s \quad($ concave implies $f>0)$

The image produced by a concave mirror of a real object is
a) always upright.
b) always inverted.
c) sometimes upright and sometimes inverted.

a) always upright.
b) always inverted.
c) sometimes upright and sometimes inverted

Is image of a real object from a concave mirror upright or inverted?

Once again, it depends on position relative to focal point!

- If $s^{\prime}>0$, real and inverted
- If $s^{\prime}<0$, virtual and upright

Y\&F Example 34.4

(a)

(c)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

(b)

cosmetic mirror

The image produced by a convex mirror of a real object is
a) always real.
b) always virtual.
c) sometimes real and sometimes virtual.

Question 4

The image produced by a convex mirror of a real object is
a) always real.
b) always virtual.
c) sometimes real and sometimes virtual.

Is image of a real object from a convex mirror

real or virtual?
Same PROCEDURE as for concave mirrors we did earlier!

- Draw Rays or..
- $1 / s^{\prime}=1 / f-1 / s \quad($ convex implies $f<0)$

The image produced by a convex mirror of a real object is
a) always upright.
b) always inverted.
c) sometimes upright

The inage produced by a convex mirror of a real object is
a) always upright.
b) always inverted.
c) sometimes upright

Is image of a real object from a convex mirror

 upright or inverted?Once again, depends on sign of s^{\prime} (real/inverted or virtual/upright)

- Here s' < 0 ALWAYS... therefore virtual and upright

Question 6

- In order for a real object to create a real, inverted enlarged image, a) we must use a concave mirror
b) we must use a convex mirror.
c) neither a concave nor a convex mirror can produce this image.

Question 6

- In order for a real object to create a real, inverted enlarged image,
a) we must use a concave mirror.
D) we must use a convex mirror.
C) neither a concave nor a convex mirror can produce this image.
- A convex mirror can only produce a virtual image since all reflected rays will diverge. Therefore, \mathbf{b}) is false.
- To create a real image with a concave mirror, the object must be outside the focal point.
- The example we just did gave a real,
inverted reduced image.
- Is it possible to choose the parameters such that the image is enlarged??

The answer:

- \boldsymbol{h}^{\prime} is a real image.
- Therefore consider the OBJECT to be
\boldsymbol{h}, The IMAGE will be \boldsymbol{h}

Refraction on Spherical Surface

For small angles

Lenses

- A lens is a piece of transparent material shaped such that parallel light rays are refracted towards a point, a focus:
- Convergent Lens
- light moving from air into glass will move toward the normal
- light moving from glass back into air will move away from the normal
- DireargocusLens
- light moving from air into glass
will move toward the normal
- light moving from glass back into air will move away from the normal
- virtual focus

The Lens Equation

- We now derive the lens equation which determines the image distance in terms of the object distance and the focal length.
- Convergent Lens :----------A.

Ray Trace:

$\underbrace{\text { Ray parallel to axis (white) passes through focal point } f}_{\text {two sets of similar triangles: } \frac{h^{\prime}}{h}=\frac{s^{\prime}}{s} \quad \frac{h^{\prime}}{s^{\prime}-f}=\frac{h}{f}}$ These are principal eliminating $h^{\prime} / h: \quad \frac{s^{\prime}}{s}=\frac{s^{\prime}-f}{f}$ $\longrightarrow \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$

magnification: also same as mirror eqn!! $M<0$ for inverted image.

$$
M=-\frac{s^{\prime}}{s}
$$

A parallel laser beam of width w_{1} is incident on a two lens
system as sholnın halninı

Each lens is converging. The
length than the first $\left(f_{2}>f_{1}\right)$.
What does the beam look like when it emerges from the
second lens?
a) The beam is converging
b) The beam is diverging
c) The beam is parallel to the axis with a width $<\mathrm{w}_{1}$
d) The beam is paralle! to the axis with a width $=w_{1}$ e) The beam is parallel to the axis with a width $>\mathrm{w}_{1}$

Lens Equation summary

- Draw some ray diagrams: convergent lens example

a) is always a positive (i.e., converging) lens
b) is always a negative (i.e., diverging) lens
c) is sometimes positive, and sometimes negative, depending on whether you are looking at an object near or far away
d) is positive if you are near-sighted and negative if you are farsighted
a) inverted
b) noninverted
a) real
b) virtual

The image on the back of your retina is
a) enlarged
b) reduced

Summary of Lenses and Mirrors

- We have derived, in the paraxial (and thin lens) approximation, the same equations for mirrors and lenses:

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad M=-\frac{s^{\prime}}{s}
$$

when the following sign conventions are used:

Variable	Mirror	Lens
$\begin{aligned} & f>0 \\ & f<0 \end{aligned}$	concave convex	converging diverging
$\begin{aligned} & s>0 \\ & s<0 \end{aligned}$	real (front) Viltionffrack)	real (front) VIIturat frack)
$\begin{aligned} & s^{\prime}>0 \\ & s^{\prime}<0 \end{aligned}$	real (front) virtual (back)	real (back) virtual (front)

Principal rays "connect" object and image one goes through the center of the lens or mirror
the other goes parallel to the optic axis and then is refracted or reflected through a focal point
the third one is like the second one....

For next time

- Homework \#13 \rightarrow due Monday
- One more lecture: optics/optical phenomenon
- Last quiz now!

Spherical Mirror

Point C, center of curvature. Suppose object at P, then out Going ray passes through P^{\prime}.
$\alpha+\theta=\phi ; \phi+\theta=\beta \Rightarrow \alpha+\beta=2 \phi$
Concave Mirror

$$
\tan \alpha=\frac{h}{s-\delta} ; \tan \beta=\frac{h}{s^{\prime}-\delta} ; \tan \phi=\frac{h}{R-\delta}
$$

Assume, angles small, $\delta \cong 0$, paraxial rays, approx. parallel to axis. Note s and s^{\prime} positive.

$$
\alpha \cong \frac{h}{s} ; \beta \cong \frac{h}{s^{\prime}} ; \phi \cong \frac{h}{R}
$$

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{2}{R}
$$

[^0]: Copyright e 2008 Pearson Education, inc., publishing as Pearson Addison-Wesley.

