Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Assignment $\# 12 \rightarrow$ due Monday
2) Start Optics (Chapter 33)
3)Last HW (\#13 posted) \rightarrow due Monday, May 3rd

Reffaction

Index of Refraction

- Speed of light, c , in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Speed of light, v , in different medium can be $\mathrm{v}<\mathrm{c}$.
- index of refraction, $\mathrm{n}=\mathrm{c} / \mathrm{v}$.
- frequency, f, does not change in wave eqn. of $v=f \lambda$,
- wavelength, λ, depends on medium, $\lambda=\mathrm{v} / \mathrm{f}=\mathrm{c} / \mathrm{nf}=\lambda_{0} / \mathrm{n}$
- In some media, n, depends on f, this is called dispersion.

Waves, wave front, rays (Y\&F section 33.2)

Plane waves moving in +x direction

$\overrightarrow{\boldsymbol{E}}$: y-component only
$\overrightarrow{\boldsymbol{B}}: z$-component only

$$
\begin{aligned}
& \vec{E}(x, y, z, t)=E_{0} \hat{y} \cos (k x-\omega t) \\
& \vec{B}(x, y, z, t)=B_{0} \hat{z} \cos (k x-\omega t)
\end{aligned}
$$

Wave front is a surface of constant phase

E field Wave front (y-z plane surface of constant phase)

Huygen's Principle (Y\&F section 33.7)

- Huygen's principle; a wave front can be a source of secondary wavelets the spread out in all directions at the speed of propagation in the medium. The envelope of leading edges forms a wave front. - This principle was stated by Huygen in 1678, it is derivable from Maxwell's eqn. It is a geometrical description of ray propagation.

Plane wave example;
Secondary wavelets create another wave front (plane)

Reflection from Huygen's Principle

Consider wave fronts, separated by vt, the incident wave fronts in contact with the surface will create a wavelets according to Huygen's Principle and leads to another "reflected" wave front.
The result is $\theta_{i}=\theta_{r}$
reflected wave front
Incident wave front

Refraction from Huygen's Principle

Now the speed changes, from medium a to medium b, so the Speed may change and the wavefront spacing differs.

$$
\mathbf{n}_{\mathrm{a}} \sin \theta_{a}=\mathbf{n}_{b} \sin \theta_{b}
$$

Snell's Law

Snell's Law (law of refraction)

Medium $\mathrm{a}, \mathrm{v}_{\mathrm{a}}=\mathrm{c} / \mathrm{n}_{\mathrm{a}}$

Medium $b, v_{b}=c / n_{b}$ Refracted Nave front
$\theta_{0} \begin{gathered}\frac{\pi}{2} \\ \frac{0}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ \frac{2}{2} \\ 2\end{gathered}$
$\mathbf{n}_{\mathrm{a}} \sin \theta_{\mathrm{a}}=\mathbf{n}_{\mathbf{b}} \sin \theta_{\mathrm{b}}$
Snell's Law

Angles are usually given relative to normal to plane

Question 1

> A ray of light passes from air into water with an angle of incidence of 30°. Which of the following quantities does not change as the light enters the water.

a) Wavelength
b) frequency
c) speed of propagation
d) direction of propagation.

Question 1

> A ray of light passes from air into water with an angle of incidence of 30°. Which of the following quantities does not change as the light enters the water.
a) Wavelength
b) frequency
c) speed of propagation
d) direction of propagation.

Question 2

- Which of the following ray diagrams could represent the passage of light from air through glass and back to air? $\quad\left(n_{\text {air }}=1\right.$ and $\left.n_{\text {glass }}=1.5\right)$

Question 2

- Which of the following ray diagrams could represent the passage of light from air through glass and back to air? $\left(n_{\text {air }}=1\right.$ and $\left.n_{\text {glass }}=1.5\right)$

- The behavior of these rays is determined from Snell's Law:

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

- Since \boldsymbol{n} (glass) $>\boldsymbol{n}$ (air) $\boldsymbol{\operatorname { s i n }} \theta$ (glass) $<\boldsymbol{\operatorname { s i n }} \theta$ (air)
- Therefore, moving from air to glass, ray will bend toward normal.
- this eliminates (a).
- Moving from glass to air, ray will bend away from normal.
- this eliminates (c).
- As a matter of fact, the final angle in air must be equal to the initial
angle in air!!

EXAMPLE, from air into glass;

Suppose we have light in air ($\mathrm{n}=1$) incidence on glass ($\mathrm{n}=1.55$) at an angle $\theta_{a}=45$ deg. What is the angle
 of the refracted light, θ_{b} ?

$$
\begin{aligned}
& n_{\text {air }} \sin \theta_{a}=n_{\text {glass }} \sin \theta_{b} \\
& (1) \sin \left(45^{\circ}\right)=(1.55) \sin \theta_{b} \\
& \sin \theta_{b}=\frac{(1) \sin \left(45^{\circ}\right)}{1.55}=\frac{1}{1.55 \sqrt{2}} \\
& \theta_{b}=27^{\circ}
\end{aligned}
$$

EXAMPLE, from glass into air; Suppose we have light in glass ($\mathrm{n}=1.55$) incident into air at an angle $\theta_{a}=30$ deg. What is the angle of the refracted light, θ_{b} ?

$$
\begin{aligned}
& n_{\text {glass }} \sin \theta_{a}=n_{a i r} \sin \theta_{b} \\
& (1.55) \sin \left(30^{\circ}\right)=(1) \sin \theta_{b} \\
& \sin \theta_{b}=(1.55) \sin \left(45^{\circ}\right)=\frac{1.55}{2} \\
& \theta_{b}=51^{\circ}
\end{aligned}
$$

The ANITA Concept

$\sim 700 \mathrm{~km}$ to horizon

observed area:

$\sim 1.5 \mathrm{M}$ square km

Refraction limits ANITA!

"Mini-Antarctica" at Stanford Linear Accelerator

SLAC T486

. Problem!!!

. There is no escape!!!
(1.8) $\sin \left(34^{\circ}\right)=(1) \sin \theta_{b}$
$\sin \theta_{b}=(1.8) \sin \left(34^{\circ}\right)=1.0$
$\theta_{b}=90^{\circ}$

. Problem

$$
\begin{aligned}
& n_{i c e} \sin \theta_{a}=n_{a i r} \sin \theta_{b} \\
& (1.8) \sin \left(27^{\circ}\right)=(1) \sin \theta_{b}
\end{aligned}
$$

. Solution = cut!

$\sin \theta_{b}=(1.8) \sin \left(27^{\circ}\right)=0.82$
$\theta_{b}=54.8^{\circ}$

Mini-Antarctica at Stanford Linear Accelerator

Cut ~7degrees! (jackhammers, chainsaws, mauls not shown)

Let there be light! (OK, radio)

Suppose you are stranded on an island with no food. You see a fish in the water. Where should you aim your spear to hit the fish?

ANSWER; do not aim directly at the apparent position of the fish. Aim at the inside of the fish.

Suppose in the previous question instead of a spear you had a high power laser to simultaneously kill and cook the fish (in the water). Where should you aim the laser??

ANSWER; aim directly at apparent fish position as the laser beam will refract to the correct fish position.

For next time

- Homework \#12 posted \rightarrow due Monday
- The home stretch: optics/optical phenomenon

Key Instrument pieces

Launch: December 15, 2007 (after almost 2 agonizing weeks of waiting)

Courtesy Kim Palladino

- A flawless launch
- CSBF truly professional
- After day after day after day of false starts, we were really ready to go

