Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

- 1) Assignment #11 \rightarrow due today
- 2) Complete Electromagnetic Waves
- 3) First updates ...

Midterm 2 summary

Problem problems

Const Current I

stationary magnet

son Education, Inc., publishing as Addison Wesley.

Magnetic Field of a wire loop

Suppose a wire loop is centered at the origin in the y-z plane. What is

the B field along the center line axis (x-axis)? By symmetry, the net B field must be only along the x-axis as the y and z components will cancel.

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl \times \hat{r}}{r^2}$$

$$dB_x = dB\cos\theta = dB\frac{a}{R}$$

$$dB = \frac{\mu_0 I dl}{4\pi r^2}$$

$$B_{x} = \frac{\mu_{0}I}{4\pi} \int \left(\frac{1}{r^{2}}\right) \left(\frac{a}{r}\right) dl = \frac{\mu_{0}I}{4\pi} \frac{a}{r^{3}} \int dl$$
$$= \frac{\mu_{0}I}{4\pi} \frac{a}{r^{3}} 2\pi a = \boxed{\frac{\mu_{0}Ia^{2}}{2\sqrt{x^{2} + a^{2}}}}$$

Problem 4 c: a=1200km, x=6360km, $B=0.5x10^{-4}$ T, solve for I

Remarks on Faraday's Law with different attached surfaces

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d \int \vec{B} \cdot d\vec{A}}{dt}$$

Faraday's Law works for any closed Loop and <u>ANY</u> attached surface area

This is proved in Vector Calculus with Stoke's Theorem

Summary of Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

If we form any closed loop, the line integral of the electric field equals the time rate change of magnetic flux through the surface enclosed by the loop.

If there is a changing magnetic field, then there will be electric fields induced in closed paths. The electric fields direction will tend to reduce the changing B field.

Problem 4 d: R=6360km,
B =
$$0.5 \times 10^{-4}$$
 T, solve for $d\Phi_B/dt$

$$dt = 1s$$

$$E(2\pi r) = -BxA$$

$$A = \pi r^{2}$$

Course summary

sinusoidal EM wave solutions; moving in +x

 \vec{E} : y-component only

 \vec{B} : z-component only

ght © 2004 Pearson Education, Inc., publishing as Addison Wesley

EM wave; energy momentum, angular momentum

Previously, we demonstrated the energy density existed in E fields in Capacitor and in B fields in inductors. We can sum these energies,

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\mu_0 B^2$$

Since, E=cB and $c=1/\sqrt{\mu_0\varepsilon_0}$ then u in terms of E,

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\mu_0 \left(\frac{E}{c}\right)^2 = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2}\varepsilon_0 E^2 = \varepsilon_0 E^2$$

=> EM wave has energy and can transport energy at speed c

EM wave; energy flow & Poynting Vector

Suppose we have transverse E and B fields moving, at velocity c, to the right. If the energy density is 2 and the field is moving through are $u = \varepsilon_0 E^2$ and the field is moving through area A at velocity c covers volume Act,

that has energy, uAct. Hence the amount of energy

flow per unit time per unit surface area is,

$$\frac{1}{A}\frac{dU}{dt} = \frac{1}{At}(uAct) = uc = \varepsilon_0 cE^2$$

This quantity is called, S. We can write this in terms of E&B fields,

$$S = \varepsilon_0 c E^2 = \varepsilon_0 c E c E / c = \varepsilon_0 c E c B = E B / \mu_0$$

We can also define the energy flow with direction, called Poynting , which provides direction of propagation vector,

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

Comment on Poynting Vector

Just another way to keep track of all this

- Its magnitude is equal to I
- Its direction is the direction of propagation of the wave

Waves Carry Energy

Total Energy Density

$$u = \varepsilon_o E^2$$

Average Energy Density

EM wave; Intensity

The intensity, I, is the time average of the magnitude of the Poynting vector and represents the <u>energy flow per unit area</u>.

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{1}{\mu_0} \langle \vec{E}(x, y, z, t) \times \vec{B}(x, y, z, t) \rangle$$

In Y&F, section 32.4, the average for a sinusoidal plane wave \((squared)\) is worked out,

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} \langle 1 + \cos(2kx - 2\omega t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0}$$

The can be rewritten as,

$$I = \langle \vec{S}(x, y, z, t) \rangle = \frac{E_{\text{max}} B_{\text{max}}}{2\mu_0} = \frac{\varepsilon_0 c}{2} E_{\text{max}}^2 = \frac{\varepsilon_0 c}{2c} B_{\text{max}}^2$$

Waves Carry Energy

Total Energy Density

$$u = \varepsilon_o E^2$$

Average Energy Density

$$\langle u \rangle = \frac{1}{2} \varepsilon_o E_o^2$$

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$$

A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna.

(a) What is the magnetic field amplitude?

a.) E = c B; B= E/c =
$$5.4 \times 10^{-2}$$
 (V/m)/3 × 10^{8} m/s
B = 1.8×10^{-10} T

A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna.

- (a) What is the magnetic field amplitude?
- (b) The intensity?
- (C) The total average power?

A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna. (a) What is the magnetic field amplitude? (b) The intensity? (C) The total average power?

b.)
$$I = \frac{1}{2} \varepsilon_0 c E^2;$$

$$I = \frac{1}{2} (8.85 \times 10^{-12} C^2 / Nm^2) (3 \times 10^8 m/s) (5.4 \times 10^{-2} V/m)$$

$$I = 3.87 \times 10^{-6} W/m^2$$

A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna.

(C) The total average power?

A sinusoidal electromagnetic wave emitted by a cell phone has a wavelength of 35.4 cm and an electric field amplitude of 5.4×10^{-2} V/m at a distance of 250 m from the antenna. (a) What is the magnetic field amplitude? (b) The intensity? (C) The total average power?

c.) Assume isotropic: I=P/A;

 $P=4\pi r^2 I = 4 \pi (250m)^2 I$

P = 3 W

From last time... EM waves carry energy...

Lasers = Coherence!

Even reducing divergence: sun through magnifying glass

Light has Momentum!

If it has energy and its moving, then it also has momentum:

Analogy from mechanics:

$$E = \frac{p^2}{2m}$$

$$\frac{dE}{dt} = \frac{\sqrt{p}}{\sqrt{m}} \frac{dp}{dt} = \frac{\sqrt{v}}{\sqrt{v}} \frac{dp}{dt} = vF$$

$$\frac{dE}{dt} = \frac{\sqrt{u}}{\sqrt{u}} \frac{dp}{dt} = \frac{\sqrt{v}}{\sqrt{u}} \frac{dp}{dt} = vF$$

IA = cF

For E-M waves:

$$\frac{dE}{dt} \to \frac{dU}{dt} = IA$$

$$P = \frac{I}{c}$$

Radiation pressure

Light Pressure

Energy transport → momentum

Momentum =
$$\frac{total \text{ energy carried by wave}}{\text{speed}} = \frac{U}{c}$$

Intensity =
$$\frac{\text{energy}}{\text{time-area}}$$
 \rightarrow $\frac{I}{c} = \frac{\text{energy/}c}{\text{time-area}} = \frac{\text{momentum}}{\text{time-area}}$

Force =
$$\frac{\text{momentum}}{\text{time}}$$

$$\frac{I}{c} = \frac{\text{Force}}{\text{area}} \equiv \text{Radiation Pressure}$$

Light pressure, though "light", has noticeable effects → comet's tail pushed away from the sun*.

*Note: The dust tail is pushed away by radiation; the ion tail is pushed away by the solar wind!

Question 1:

An absorbing black disk of radius r, mass m, is hanging by a thread. A laser beam with radius a, intensity I, and frequency a, is incident on the disk (centered on it) from the left. If we increase ____ (keeping all other parameters the same), the light force on the disk will increase.

a disk radius *r*

b. disk mass *m*

c. laser beam radius a

d. laser beam intensity *I*

e. laser frequency ω

Increasing *I* definitely increases force. Intensity is independent of frequency.

force = pressure x area pressure = I/c

r < a: increasing $r \rightarrow$ more of the beam is intercepted \rightarrow more force. increasing a does nothing (if I is kept constant)

r > a: increasing $a \rightarrow$ more of disk is hit by the beam \rightarrow more force. increasing r does nothing

- Two identical spaceships are sitting at equal distances from the sun. One ship is colored black, the other is silver.
 - -Which ship will experience the greater force from the
 - (a) black ship (b) silver ship

Sun, far away

(c) same

• Two identical spaceships are sitting at equal distances from the sun. One ship is colored black, the other is silver.

-Which ship will experience

(a) black ship (b) silver ship

- (c) same
- The ships are the same distance from the source, so the intensity of light hitting each is the same.
- They are the same size and shape and (as drawn) have the same orientation. Therefore, they present the same cross-sectional area and experience the same total *incident* flux of light.
- BUT...the black ship absorbs *all* the momentum from the light, while the silver ship *reflects* it. Therefore, the silver ship will experience twice the change in momentum, or twice the force.

• Two identical spaceships are sitting at equal distances from the sun. One ship is colored black, the other is

Sun, far away

- If the distance from the silver ship to the sun is doubled, the pressure will be reduced by a factor of
 - (a) 1

silver.

(b) 2

(c) 4

Sun, far away

• Two identical spaceships are sitting at equal distances from the sun. One ship is colored black, the other is silver.

• If the distance from the silver ship to the sun is doubled, the pressure will be reduced by a factor of

(a) 1

(b) 2

(c) 4

- Because the sun is assumed to be far away, the intensity at a distance r is simply the total power divided by the surface area of the sphere: $4\pi r^2$.
- Therefore, doubling r increases the surface area by 4, and reduces the intensity by 4. Thus the pressure on the ship is similarly reduced by 4.

Solar sai

Standing Waves or EM waves in a metal box

A sinusoidal E&B wave can exist in a metal box if the E field is ZERO on the boundary of the box. This requires the wave to be zero at x=0,L. This is possible if,

$$E = E_{max} \sin(n\pi x / L)$$

Where
$$n = 1,2,3...$$
 Since

X=L
$$E = E_{max} \sin(2\pi x/\lambda)$$

We have for standing waves, fixed wavelengths of,

$$\lambda_n = \frac{2L}{n}$$

Examples; Klystron in microwave oven, waveguides

For next time

- Homework #11 due.
- Homework #12 posted → due Monday
- Start optics/optical phenomenon

