Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

- 1) Assignment #11 → due Wednesday
- 2) This week: Electromagnetic Waves + ...
- 3) In the home stretch... [review schedule]

Maxwell's Equations (integral form)

Name	Equation	Description
Gauss' Law for Electricity	$\int \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	Charge and electric fields
Gauss' Law for Magnetism	$\int \vec{B} \cdot d\vec{A} = 0$	Magnetic fields
Faraday's Law	$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$	Electrical effects from changing B field
Ampere's Law (modified by Maxwell)	$\oint \vec{B} \cdot dl = \mu_0 \left(i_c + \varepsilon_0 \frac{d\Phi_E}{dt} \right)$	Magnetic effects from current and Changing E field

Maxwell's Equations

James Clerk Maxwell (1831-1879)

- generalized Ampere's Law
- made equations symmetric:
 - a changing magnetic field produces an electric field
 - a changing electric field produces a magnetic field
- Showed that Maxwell's equations predicted electromagnetic waves and c =1/ $\sqrt{\epsilon_0\mu_0}$
- Unified electricity and magnetism and light.

All of electricity and magnetism can be summarized by Maxwell's Equations.

Electromagnetic Waves in free space

A remarkable prediction of Maxwell's eqns is electric & magnetic fields can propagate in vacuum.

Examples of electromagnetic waves include; radio/TV waves, light, x-rays, and microwaves.

On to Waves!!

• Note the symmetry now of Maxwell's Equations in free space, meaning when no charges or currents are present

$$\int \vec{E} \cdot d\vec{A} = 0$$

$$\int \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \qquad \oint \vec{B} \cdot dl = \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

• Combining these equations leads to wave equations

for
$$E$$
 and B , e.g.,

$$\left(\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_x}{\partial t^2}\right)$$

• Do you remember the wave equation? Place that is changing $\partial x^2 v^2 \partial t^2$ velocity of the wave.

Review of Waves from Physics 170

• The one-dimensional wave equation: $\frac{\partial n}{\partial x^2} = \frac{1}{v^2} \frac{\partial n}{\partial t^2}$

has a general solution of the form:

$$h(x,t) = h_1(x-vt) + h_2(x+vt)$$

where h_1 represents a wave traveling in the +x direction and h_2 represents a wave traveling in the -x direction.

• A specific solution for harmonic waves traveling in the

$$h(x,t) = A \cos(kx - \omega t)$$

$$k = \frac{2\pi}{\lambda} \quad \omega = 2\pi f = \frac{2\pi}{T}$$
$$v = \lambda f = \frac{\omega}{\lambda}$$

A = amplitude

 λ = wavelength

f = frequency

v = speed

k = wave number

Motion of wave (e.g. to right)

Transverse Wave:

- A note how the wave pattern moves.
- Any particular point (look at the blue one) just moves transversely (i.e., up and down) to the direction of the wave.

Wave Velocity:

• The wave velocity is defined as the wavelength divided by the time it takes a wavelength (green) to pass by a fixed point (blue).

- Snapshots of a wave with angular frequency ω are shown at 3 times:
 - -Which of the following

expressions describes this wave? (a) $y = \sin(kx - \omega t)$

(a)
$$y = \sin(kx - \omega t)$$

(b)
$$y = \sin(kx + \omega t)$$

(c)
$$y = \cos(kx + \omega t)$$

- Snapshots of a wave with angular frequency ω are shown at 3 times:
 - -Which of the following
- (a) $y = \sin(kx \omega t)$ escribes this wave?
- (b) $y = \sin(kx + \omega t)$
- (c) $y = \cos(kx + \omega t)$
- The t = 0 snapshot \Rightarrow at t = 0, $y = \sin kx$
- At $t = \pi/2\omega$ and x=0, (a) $\Rightarrow y = \sin(-\pi/2) = -1$
- At $t = \pi/2\omega$ and x = 0, (b) $\Rightarrow y = \sin(+\pi/2) = +1$

• Snapshots of a wave with angular frequency ω are shown at 3 times:

In what direction is this wave traveling?

(a) +x direction (b) -x direction

- Snapshots of a wave with angular frequency ω are shown at 3 times:
 - -Which of the following

(a)
$$y = \sin(kx - \omega t)$$
 escribes this wave?

(b)
$$y = \sin(kx + \omega t)$$

(c)
$$y = \cos(kx + \omega t)$$

(a)
$$+ x$$
 direction

- We claim this wave moves in the -x direction.
- The orange dot marks a point of constant phase.
- It thus moves in the -x direction as time increases!!

Velocity of Electromagnetic Waves

• We derived the wave equation for E_x (Maxwell did it first, in $\sim 1865!$):

$$\left(\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_x}{\partial t^2}\right)$$

• Comparing to the general wave equation $\frac{\partial^2 h}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 h}{\partial t^2}$

we have the velocity of electromagnetic wayes in free space: $v = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3.00 \times 10^8 \,\text{m/s} \equiv c$

• This value is essentially identical to the speed of light measured by Foucault in 1860!

The ElectroMagnetic Spectrum

PROPERTIES of ELECTROMAGNETIC WAVES

Electromagnetic Spectrum

E & B in Electromagnetic Wave

• Plane Harmonic Wave:

$$E_x = E_0 \sin(kz - \omega t)$$

$$B_y = B_0 \sin(kz - \omega t)$$

where $\omega = kc$

 $\succ \left[B_{\mathrm{y}} \text{ is in phase with } E_{\mathrm{x}} \right]$

$$\triangleright \left[B_0 = E_0 / c \right]$$

 \triangleright The direction of propagation \hat{s} is given by the cross product

$$\hat{s} = \hat{e} \times \hat{b}$$

where (\hat{e}, \hat{b}) are the unit vectors in the (E,B) directions.

Nothing special about (E_x, B_y) ; e.g., could have $(E_y, -B_x)$

• Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

In what direction is this wave traveling

(a)? + z direction (b) - z direction

• Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

- To determine the direction, set phase = 0: $-kz + \omega t = 0$ $\implies z = +\frac{\omega}{k}t$
- Therefore wave moves in + z direction!
- Another way: Relative signs opposite means + direction

• Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

Which of the following expressions describes the magnetic field associated with this wave?

(a)
$$B_x = -(E_0/c) \cos(kz + \omega t)$$

(b)
$$B_x = +(E_0/c) \cos(kz - \omega t)$$

(c)
$$B_x = +(E_0/c) \sin(kz - \omega t)$$

• Suppose the electric field in an e-m wave is given by:

$$\vec{E} = -\hat{y} E_0 \cos(-kz + \omega t)$$

 Which of the following expressions describes the magnetic field associated with this wave?

(a)
$$B_x = -(E_0/c) \cos(kz + \omega t)$$

(b)
$$B_x = +(E_0/c) \cos(kz - \omega t)$$
)

(c)
$$B_x = +(E_0/c) \sin(kz - \omega t)$$

- $m{B}$ is in phase with $m{E}$ and has direction determined from: $\hat{b} = \hat{s} \times \hat{e}$
- At t=0, z=0, $E_y = -E_o$
- Therefore at t=0, z=0, $\hat{b}=\hat{s}\times\hat{e}=\hat{k}\times(-\hat{j})=\hat{i}$

$$\vec{B} = +\hat{i} \frac{E_0}{c} \cos(kz - \omega t)$$

An electromagnetic wave is travelling along the x-axis, with its electric field oscillating along the y-axis. In what direction does the magnetic field oscillate?

- a) along the x-axis
- b) along the z-axis
- c) along the y-axis

An electromagnetic wave is travelling along the x-axis, with its electric field oscillating along the y-axis. In what direction does the magnetic field oscillate?

- a) along the x-axis
- b) along the z-axis
- c) along the y-axis

Note: the direction of propagation \hat{s} is given by the cross product

$$\hat{s} = \hat{e} \times \hat{b}$$

 $\hat{s} = \hat{e} \times \hat{b}$ where (\hat{e}, \hat{b}) are the unit vectors in the (E,B) directions.

In this case, direction of \hat{s} is x and direction of \hat{e} is y $\hat{x} = \hat{y} \times \hat{z}$

$$\hat{x} = \hat{y} \times \hat{z}$$

The fields must be perpendicular to each other and to the direction of propagation.

Properties of electromagnetic waves (e.g., light)

Speed: in vacuum, always 3•10⁸ m/s, no matter how fast the source is moving (there is no "aether"!). In material, the speed can be reduced, usually only by ~1.5, but in 1999 to 17 m/s!

Direction: The wave described by $\cos(kx-\omega t)$ is traveling in the $+\hat{x}$ direction. This is a "plane" wave—extends infinitely in \hat{y} and \hat{z} .

In reality, light is often somewhat localized transversely (e.g., a laser) or spreading in a spherical wave (e.g., a star).

A plane wave can often be a good approximation (e.g., the wavefronts hitting us from the sun are nearly flat).

Plane Waves

• For any given value of z, the magnitude of the electric field is uniform everywhere in the x-y plane with that z value.

Waves Carry Energy

Total Energy Density

$$u = \varepsilon_o E^2$$

Average Energy Density

$$\langle u \rangle = \frac{1}{2} \varepsilon_o E_o^2$$

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$$

Energy Density

Previously, we demonstrated the energy density existed in E fields in Capacitor and in B fields in inductors. We can sum these energies,

=> EM wave has energy and can transport energy at speed c

Waves Carry Energy

Total Energy Density

$$u = \varepsilon_o E^2$$

Average Energy Density

$$\langle u \rangle = \frac{1}{2} \varepsilon_o E_o^2$$

Intensity
$$I = \frac{1}{2} c \varepsilon_o E_o^2 = c \langle u \rangle$$

PHOTONS

We believe the energy in an e-m wave is carried by photons

Question: What are Photons?

Answer: Photons are Photons.

Photons possess both wave and particle properties

Particle:

Energy and Momentum localized

Wave:

They have definite frequency & wavelength ($f\lambda = c$)

Connections seen in equations:

E = hf

 $p = h/\lambda$

Planck's constant

 $h = 6.63e^{-34} \text{ J-s}$

Question: How can something be both a particle and a wave?

Answer: It can't (when we observe it)

What we see depends on how we choose to measure it!

The mystery of quantum mechanics: More on this in PHYS 274

For next time

• Homework #11 due Wed.

• One more session on EM Waves, and then on to optics

