Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

- 1) Assignment #10 → due Wednesday
- 2) Quiz # 5 Friday
- 3) Today finish RLC circuits

LC Circuits

Consider the RC and LC series circuits shown:

 Suppose that the circuits are formed at t=0 with the capacitor charged to value Q.

There is a qualitative difference in the time development of the currents produced in these two cases. Why??

- Consider from point of view of energy!
 - In the RC circuit, any current developed will cause energy to be dissipated in the resistor.
 - In the LC circuit, there is NO mechanism for energy dissipation; energy can be stored both in

Energy in the *Electric* and *Magnetic* Fields

Energy stored in a capacitor ...

$$U = \frac{1}{2}CV^2$$

... energy density

$$u_{\text{electric}} = \frac{1}{2} \varepsilon_0 E^2$$

• • •

Energy stored in an inductor

$$U = \frac{1}{2}LI^2$$

... energy density

$$u_{\text{magnetic}} = \frac{1}{2} \frac{B^2}{\mu_0}$$

• • •

RC/LC Circuits

RC: current decays exponentially

LC: current oscillates

LC Oscillations (qualitative)

• At t=0, the capacitor in the LC circuit shown has a total charge Q_0 . At $t = t_1$, the capacitor is uncharged.

–What is the value of

$$V_{ab} = V_b - V_a$$
, the voltage

across the inductor at time

$$(t_1) V_{ab} < 0$$

(b)
$$V_{ab} = 0$$

(c)
$$V_{ab} > 0$$

• At t=0, the capacitor in the LC circuit shown has a total charge Q_0 . At $t = t_1$, the capacitor is uncharged.

(c) $V_{ab} > 0$

– What is the value of

$$(ab)^{\overline{V}}_{ab}^{V}_{b} = 0$$
, the voltage $V_{ab} = 0$ across the inductor at time

•
$$V_{ab}$$
 is the voltage across the inductor, but it is also (minus) the voltage across the capacitor!

• Since the charge on the capacitor is zero, the voltage across the capacitor is zero!

• At t=0, the capacitor in the LC circuit shown has a total charge Q_0 . At $t = t_1$, the capacitor is uncharged.

– What is the relation between U_{L1} , the energy stored in the inductor at $t=t_1$, and U_{C1} , the energy stored in the capacitor at $t=t_1$?

(a)
$$U_{L1} < U_{C1}$$

(b)
$$U_{L1} = U_{C1}$$

(c)
$$U_{L1} > U_{C1}$$

• At t=0, the capacitor in the LC circuit shown has a total charge Q_0 . At $t = t_1$, the capacitor is uncharged.

What is the relation between U_{L1} , the energy stored in the inductor at $t=t_1$, and U_{C1} , the

(a)
$$U_{L1}$$
 < U_{C1} in the capacitor U_{C1} at $t=t_1$?

• At $t=t_1$, the charge on the capacitor is zero.

$$U_{C1} = \frac{Q_1^2}{2C} = 0$$

$$(c) U_{L1} > U_{C1}$$

• At $t=t_1$, the current is a maximum.

$$U_{L1} = \frac{1}{2}LI_1^2 = \frac{Q_0^2}{2C} > 0$$

Question 3:

At time t = 0 the capacitor is fully charged with Q_{max} , and the current through the circuit is 0.

What is the potential difference across the inductor at t = 0?

a)
$$V_L = 0$$

b)
$$V_L = Q_{max}/C$$

c)
$$V_L = Q_{max}/2C$$

Question 3:

At time t = 0 the capacitor is fully charged with Q_{max} , and the current through the circuit is 0.

What is the potential difference across the inductor at t = 0?

a)
$$V_L = 0$$

b)
$$V_L = Q_{max}/C$$

c)
$$V_L = Q_{max}/2C$$

Question 4:

At time t = 0 the capacitor is fully charged with Q_{max} , and the current through the circuit is 0.

What is the potential difference across the inductor when the current is maximum?

a)
$$V_L = 0$$

b)
$$V_L = Q_{max}/C$$

c)
$$V_L = Q_{max}/2C$$

Question 4:

At time t = 0 the capacitor is fully charged with Q_{max} , and the current through the circuit is 0.

What is the potential difference across the inductor when the current is maximum?

b)
$$V_L = Q_{max}/C$$

c)
$$V_L = Q_{max}/2C$$

LC Oscillations

(quantitative, but only for R=0)

- What is the oscillation frequency ω_0 ?
- Begin with the loop rule:

$$\left(L\frac{d^2Q}{dt^2} + \frac{Q}{C} = 0\right)$$

Guess solution: (just harmonic oscillator!)

$$Q = Q_0 \cos(\omega t + \phi)$$

where ϕ , Q_0 determined from initial conditions

- Procedure: differentiate above form for Q and substitute into loop equation to find ω .
- Note: Dimensional analysis →

$$\omega = \frac{1}{\sqrt{LC}}$$

LC Oscillations (quantitative)

General solution:

$$Q = Q_0 \cos(\omega t + \phi)$$

Differentiate:

$$\frac{dQ}{dt} = -\omega Q_0 \sin(\omega t + \phi)$$

$$\frac{d^2Q}{dt^2} = -\omega^2 Q_0 \cos(\omega t + \phi)$$

$$\left[L\frac{d^2Q}{dt^2} + \frac{Q}{C} = 0\right]$$

Substitute into loop eqn:

$$L\left(-\omega^2 Q_0 \cos(\omega t + \phi)\right) + \frac{1}{C}\left(Q_0 \cos(\omega t + \phi)\right) = 0 \implies -\omega^2 L + \frac{1}{C} = 0$$

Therefore,

$$\omega = \frac{1}{\sqrt{LC}}$$

which we could have determined from the mass on a spring result:

$$\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{1/C}{L}} = \frac{1}{\sqrt{LC}}$$

- At t=0 the capacitor has charge Q_0 ; the resulting oscillations have frequency ω_0 . The maximum current in the circuit during these oscillations has value I_0 .
- t=0
- -What is the relation between ω_0 and ω_2 , the frequency of oscillations when the initial charge = $2Q_0$?

(a)
$$\omega_2 = 1/2 \ \omega_0$$
 (b) $\omega_2 = \omega_0$

(b)
$$\omega_2 = \omega_0$$

(c)
$$\omega_2 = 2\omega_0$$

• At t=0 the capacitor has charge Q_0 ; the resulting oscillations have frequency ω_0 . The maximum current in the circuit during these oscillations has value I_0 .

-What is the relation between ω_0 and ω_2 ,

(a)
$$\omega_2 = 1/2 \omega_0$$
 of oscillations when the initial charge $= 2Q_0$?

(c)
$$\omega_2 = 2\omega_0$$

- Q_0 determines the amplitude of the oscillations (initial condition)
- The frequency of the oscillations is determined by the circuit parameters (L, C), just as the frequency of oscillations of a mass on a spring was determined by the physical parameters (k, m)!

• At t=0 the capacitor has charge Q_0 ; the resulting oscillations have frequency ω_0 . The maximum current in the circuit during these oscillations has value I_0 .

- What is the relation between I_0 and I_2 , the maximum current in the circuit when the initial charge = $2Q_0$?

(a)
$$I_2 = I_0$$

(b)
$$I_2 = 2I_0$$

(c)
$$I_2 = 4I_0$$

- At t=0 the capacitor has charge Q_0 ; the resulting oscillations have frequency ω_0 . The maximum current in the circuit during these oscillations has value I_0 .
 - -What is the relation between I_0 and I_2 , the maximum current in the circuit when the in $I_2 = 2I_0$ (b) $I_2 = 2I_0$

(c)
$$I_2 = 4I_0$$

- The initial charge determines the total energy in the circuit: $U_0 = Q_0^2/2C$
- The maximum current occurs when Q=0!
- At this time, all the energy is in the inductor: $U = 1/2 LI_0^2$
- Therefore, doubling the initial charge quadruples the total energy.
- To quadruple the total energy, the max current must double!

Confirmation 1:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω .

If the inductance of the circuit is increased, what will happen to the frequency ω ?

a) increase

b) decrease

Confirmation 1:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω .

- 5) If the inductance of the circuit is increased, what will happen to the frequency ω ?
 - a) increase

b) decrease

Confirmation 2:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω .

If the capacitance of the circuit is increased, what will happen to the frequency?

a) increase

b) decrease

Confirmation 2:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω .

If the capacitance of the circuit is increased, what will happen to the frequency?

a) increase

b) decrease

LC Oscillations Energy Check

- Oscillation frequency $\omega = \frac{1}{\sqrt{LC}}$ has been found from the loop equation.
- The other unknowns (Q_0 , ϕ) are found from the initial conditions. E.g., in our original example we assumed initial values for the charge (Q_i) and current ($\mathbf{0}$). For these values: $Q_0 = Q_i$, $\phi = 0$.
- Question: Does this solution conserve energy?

$$U_E(t) = \frac{1}{2} \frac{Q^2(t)}{C} = \frac{1}{2C} Q_0^2 \cos^2(\omega t + \phi)$$

$$U_B(t) = \frac{1}{2}Li^2(t) = \frac{1}{2}L\omega^2 Q_0^2 \sin^2(\omega t + \phi)$$

Energy Check

Energy in Capacitor

$$U_E(t) = \frac{1}{2C}Q_0^2\cos^2(\omega t + \phi)$$

Energy in Inductor

$$U_{B}(t) = \frac{1}{2}L\omega^{2}Q_{0}^{2}\sin^{2}(\omega t + \phi)$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$U_B(t) = \frac{1}{2C} Q_0^2 \sin^2(\omega t + \phi)$$

Therefore,
$$U_E(t) + U_B(t) = \frac{Q_0^2}{2C}$$

Inductor-Capacitor Circuits

Solving a LC circuit problem; Suppose $\omega=1/\text{sqrt}(LC)=3$ and given the initial conditions,

$$Q(t=0)=5C$$

$$I(t=0)=15A$$

Solve find Q_0 and ϕ_0 , to get complete solution using,

$$Q(t=0) = 5 = Q\cos(0 + \phi_0)$$

$$I(t=0)=15=-Q\omega\sin(0+\phi_0)=-3Q\sin(0+\phi_0)$$

and we find,

$$(5)^{2} + \left(-\frac{15}{3}\right)^{2} = Q^{2} \left[\sin^{2}(\phi_{0}) + \cos^{2}(\phi_{0})\right] = Q^{2}, \quad Q = 5\sqrt{2}$$

$$\phi_0 = inv. \tan\left(-\frac{15}{5 \cdot 3}\right), \quad \phi_0 = -45^\circ$$

Mathematical Insert

The following are all equally valid solutions

$$Q(t) = Q_0 \cos(\omega t + \phi_0)$$

$$Q(t) = Q_0 \sin(\omega t + \phi_1)$$

$$Q(t) = Q_0 \left(\cos(\omega t)\cos(\phi_0) - \sin(\omega t)\sin(\phi_0)\right)$$

$$Q(t) = A\cos(\omega t) + B\sin(\omega t)$$

The LC circuit eqn is the analog of the spring force eqn

$$\frac{d^2Q}{dt^2} + \frac{1}{LC}Q = 0 \qquad m\frac{d^2x}{dt^2} = -Kx$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$m\frac{d^2x}{dt^2} = -Kx$$

$$\omega = \sqrt{\frac{k}{m}}$$

Inductor-Capacitor-Resistor Circuit

$$0 = \frac{Q}{C} + RI + L\frac{d^2Q}{dt^2}$$

$$0 = L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{Q}{C}$$

Solution will have form of

$$Q(t) = Ae^{-\alpha t}\cos(\omega't + \phi)$$

If,
$$\frac{1}{LC} > \frac{R^2}{4L^2}$$

Inductor-Capacitor-Resistor Circuit 3 solutions, depending on L,R,C values

$$\frac{1}{LC} > \frac{R^2}{4L^2}$$

(b) Critically damped circuit (larger *R*)

$$\frac{1}{LC} = \frac{R^2}{4L^2}$$

(c) Overdamped circuit (very large *R*)

$$\frac{1}{LC} < \frac{R^2}{4L^2}$$

Inductor-Capacitor-Resistor Circuit Solving for all the terms

$$Q(t) = Ae^{-\alpha t}\cos(\omega't + \phi)$$

$$= Ae^{-\left(\frac{R}{2L}\right)t}\cos\left(\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}t + \phi\right)$$

$$\alpha = \frac{R}{2L}$$
 and $\omega' = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$

Solution for underdamped circuit; $\frac{1}{LC} > \frac{R^2}{4L^2}$

For other solutions, use starting form, solve for λ and λ' ,

$$Q(t) = Ae^{-\lambda t} + Be^{-\lambda' t}$$

For next time

• Homework #10 [due Wednesday]

 Quiz on Friday: Faraday's Law, Inductance and Inductors

