Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Assignment \#10 \rightarrow due Wednesday
2) Quiz \# 5 Friday
3) Today finish RLC circuits

LC Circuits

- Consider the RC and LC series circuits shown:
- Suppose that the circuits are formed at $t=0$ with the
 capacitor charged to value Q.
There is a qualitative difference in the time development of the currents produced in these two cases. Why??
- Consider from point of view of energy!
- In the RC circuit, any current developed will cause energy to be dissipated in the resistor.
- In the LC circuit, there is NO mechanism for energy dissipation; energy can be stored both in

Energy in the Electric and Magnetic Fields

Energy stored in a capacitor ...

$$
U=\frac{1}{2} C V^{2}
$$

$$
\begin{gathered}
\frac{+++++++}{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow} \downarrow E \\
---\mid--- \\
u_{\text {electric }}=\frac{1}{2} \varepsilon_{0} E^{2}
\end{gathered}
$$

energy density

Energy stored in an inductor

$$
U=\frac{1}{2} L I^{2}
$$

energy density

$$
\begin{gathered}
\boldsymbol{B} \\
u_{\text {magnetic }}=\frac{1}{2} \frac{B^{2}}{\mu_{0}}
\end{gathered}
$$

RC/LC Circuits

RC:
current decays exponentially

LC Oscillations (qualitative)

Question 1

- At $t=0$, the capacitor in the LC circuit shown has a total charge Q_{0}. At $t=t_{1}$, the capacitor is uncharged.

- What is the value of

$$
V_{a b}=\mathrm{V}_{b}-\mathrm{V}_{a} \text {, the voltage }
$$

$\left.t_{1}\right) V_{a b}<0$
(b) $\boldsymbol{V}_{\boldsymbol{a b}}=\mathbf{0}$
(c) $\boldsymbol{V}_{\boldsymbol{a} \boldsymbol{b}}>\mathbf{0}$

Question 1

- At $t=0$, the capacitor in the LC circuit shown has a total charge Q_{0}. At $t=t_{1}$, the capacitor is uncharged.

$$
V_{c b} \overline{\bar{V}}_{a b b} V_{b}<V_{0}
$$

$$
V_{a b}=0
$$

$$
\text { (c) } \boldsymbol{V}_{a b}>\mathbf{0}
$$

t_{1}

- $V_{a b}$ is the voltage across the inductor, but it is also (minus) the voltage across the capacitor!
- Since the charge on the capacitor is zero, the voltage across the capacitor is zero!

Question 2

- At $t=0$, the capacitor in the LC circuit shown has a total charge Q_{0}. At $t=t_{1}$, the capacitor is uncharged.

- What is the relation between $\boldsymbol{U}_{\mathbf{L 1}}$, the energy stored in the inductor at $\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}$, and $\boldsymbol{U}_{\boldsymbol{C} 1}$, the energy stored in the capacitor at $\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}$?
(a) $\boldsymbol{U}_{\boldsymbol{L} \mathbf{1}}<\boldsymbol{U}_{\boldsymbol{C} \mathbf{1}}$
(b) $\boldsymbol{U}_{\boldsymbol{L 1}}=\boldsymbol{U}_{\boldsymbol{C} \mathbf{1}}$
(c) $\boldsymbol{U}_{\boldsymbol{L} \mathbf{1}}>\boldsymbol{U}_{\boldsymbol{C 1}}$

Question 2

- At $t=0$, the capacitor in the LC circuit shown has a total charge Q_{0}. At $t=t_{1}$, the capacitor is uncharged.

$U_{L 1}$, the energy stored in the

inductor at $t=t_{1}$, and $U_{C 1}$, the

$$
\begin{aligned}
& \text { (a) } \boldsymbol{U}_{\mathbf{L 1}}<\boldsymbol{U}_{\mathbf{C 1}} \\
& \text { at } \boldsymbol{t} \text { ? }
\end{aligned}
$$

$$
\text { (c) } \boldsymbol{U}_{\boldsymbol{L} \mathbf{1}}>\boldsymbol{U}_{\boldsymbol{C} \mathbf{1}}
$$

- At $\boldsymbol{t}=\boldsymbol{t}_{\mathbf{1}}$, the charge on
the capacitor is zero.

$$
U_{C 1}=\frac{Q_{1}^{2}}{2 C}=0
$$

$$
U_{L 1}=\frac{1}{2} L I_{1}^{2}=\frac{Q_{0}^{2}}{2 C}>0
$$

Question 3:

At time $t=0$ the capacitor is fully charged with $Q_{\max }$, and the current through the circuit is 0 .
a) $V_{L}=0$
b) $V_{L}=Q_{\text {max }} / C$
c) $V_{L}=Q_{\max } / 2 C$

Question 3:

At time $t=0$ the capacitor is fully charged with $Q_{\text {max }}$, and the current through the circuit is 0 .
a) $V_{L}=0$
b) $V_{L}=Q_{\max } / C$
c) $V_{L}=Q_{\max } / 2 C$

Question 4:

At time $t=0$ the capacitor is fully charged with $Q_{\max }$, and the current through the circuit is 0 .
a) $V_{L}=0$
b) $V_{L}=Q_{\text {max }} / C$
c) $V_{L}=Q_{\max } / 2 C$

Question 4:

At time $t=0$ the capacitor is fully charged with $Q_{\max }$, and the current through the circuit is 0 .
a) $V_{L}=0$
b) $V_{L}=Q_{\max } / C$
c) $V_{L}=Q_{\max } / 2 C$

LC Oscillations

(quantitative, but only for $\mathrm{R}=0$)

- What is the oscillation frequency ω_{0} ?
- Begin with the loop rule:

$$
L \frac{d^{2} Q}{d t^{2}}+\frac{Q}{C}=0
$$

- Guess solution: (just harmonic oscillator!)

$$
Q=Q_{0} \cos (\omega t+\phi)
$$

where $\boldsymbol{\phi} \boldsymbol{Q}_{\mathbf{0}}$

- Procedure: differentiate above form for Q and substitute into loop equation to find ω.
- Note: Dimensional analysis \rightarrow

$$
\omega=\frac{1}{\sqrt{L C}}
$$

LC Oscillations (quantitative)

- General solution:

$$
Q=Q_{0} \cos (\omega t+\phi)
$$

- Differentiate:

$$
\begin{aligned}
& \frac{d Q}{d t}=-\omega Q_{0} \sin (\omega t+\phi) \\
& \frac{d^{2} Q}{d t^{2}}=-\omega^{2} Q_{0} \cos (\omega t+\phi)
\end{aligned}
$$

$$
L \frac{d^{2} Q}{d t^{2}}+\frac{Q}{C}=0
$$

- Substitute into loop eqn:

$$
L\left(-\omega^{2} Q_{0} \cos (\omega t+\phi)\right)+\frac{1}{C}\left(Q_{0} \cos (\omega t+\phi)\right)=0 \Rightarrow-\omega^{2} L+\frac{1}{C}=0
$$

which we could have determined
from the mass on a spring result:

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{1 / C}{L}}=\frac{1}{\sqrt{L C}}
$$

Question 5

- At $t=0$ the capacitor has charge Q_{0}; the resulting oscillations have frequency ω_{0}. The maximum current in the circuit during these oscillations has value I_{0}.
- What is the relation
the frequency of osci
initial charge $=2 Q_{0}$?
(a) $\omega_{2}=1 / 2 \omega_{0}$
(b) $\omega_{2}=\omega_{0}$
(c) $\omega_{2}=\mathbf{2} \omega_{0}$

Question 5

- At $t=0$ the capacitor has charge Q_{0}; the resulting oscillations have frequency ω_{0}. The maximum current in the circuit during these oscillations has value I_{0}.

$$
\begin{aligned}
& \text { - What is the relation between } \omega_{0} \text { and } \boldsymbol{\omega}_{2} \\
& \text { (a) } \omega_{\mathbf{2}}=\mathbf{1} / \mathbf{2} \omega_{0} \text { of os } \boldsymbol{\omega}_{0} \text { (b)tion } \omega_{\mathbf{2}}=\omega_{\mathbf{0}} \text { the } \\
& \text { (c) } \omega_{\mathbf{2}}=\mathbf{2} \omega_{\mathbf{0}}
\end{aligned}
$$

- Q_{0} determines the amplitude of the oscillations (initial condition)
- The frequency of the oscillations is determined by the circuit parameters (L, C), just as the frequency of oscillations of a mass on a spring was determined by the physical parameters (k, m) !

Question 6

- At $t=0$ the capacitor has charge Q_{0}; the resulting oscillations have frequency ω_{0}. The maximum current in the circuit during these oscillations has value I_{0}.

- What is the relation between \boldsymbol{I}_{0} and \boldsymbol{I}_{2}, the maximum current in the circuit when the initial charge $=\mathbf{2 Q}_{\mathbf{0}}$?
(a) $\boldsymbol{I}_{2}=\boldsymbol{I}_{0}$
(b) $\boldsymbol{I}_{2}=\mathbf{2} \boldsymbol{I}_{0}$
(c) $\boldsymbol{I}_{2}=\mathbf{4} \mathbf{I}_{0}$

Question 6

- At $t=0$ the capacitor has charge Q_{0}; the resulting oscillations have frequency ω_{0}. The maximum current in the circuit during these oscillations has value I_{0}.

$$
- \text { What is the relation between } I_{0} \text { and } I_{2}
$$

$$
\text { in }(\mathrm{f}) \boldsymbol{I}_{2}=\boldsymbol{I}_{0} \mathrm{ge}=2 Q_{0} \quad \text { (b) } \boldsymbol{I}_{2}=\mathbf{2 \boldsymbol { I } _ { 0 }}
$$

- The initial charge determines the total energy in the circuit: $U_{0}=Q_{0}{ }^{2} / 2 C$
- The maximum current occurs when $Q=0$!
- At this time, all the energy is in the inductor: $U=1 / 2 L I_{0}{ }^{2}$
- Therefore, doubling the initial charge quadruples the total energy.
- To quadruple the total energy, the max current must double!

Confirmation 1:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω.

If the inductance of the circuit is increased, what will happen to the frequency $\boldsymbol{\omega}$?
a) increase
b) decrease
c) doesn't change

Confirmation 1:

The current in a LC circuit is a sinusoidal oscillation, with frequency ω.

5) If the inductance of the circuit is increased, what will happen to the frequency $\boldsymbol{\omega}$?
a) increase
c) doesn't change

The current in a LC circuit is a sinusoidal oscillation, with frequency ω.

If the capacitance of the circuit is increased, what will happen to the frequency?
a) increase
b) decrease
c) doesn't change

The current in a LC circuit is a sinusoidal oscillation, with frequency ω.

If the capacitance of the circuit is increased, what will happen to the frequency?
a) increase
b) decrease
c) doesn't change

LC Oscillations Energy Check

- Oscillation frequency $\omega=\frac{1}{\sqrt{L C}} \quad$ has been found from the loop equation.
- The other unknowns (Q_{0}, ϕ) are found from the initial conditions. E.g., in our original example we assumed initial values for the charge ($\boldsymbol{Q}_{\boldsymbol{i}}$) and current (0). For these values: $Q_{0}=Q_{i}, \phi=0$.
- Question: Does this solution conserve energy?

$$
\begin{aligned}
& U_{E}(t)=\frac{1}{2} \frac{Q^{2}(t)}{C}=\frac{1}{2 C} Q_{0}^{2} \cos ^{2}(\omega t+\phi) \\
& U_{B}(t)=\frac{1}{2} L i^{2}(t)=\frac{1}{2} L \omega^{2} Q_{0}^{2} \sin ^{2}(\omega t+\phi)
\end{aligned}
$$

Energy Check

Energy in Capacitor

$$
U_{E}(t)=\frac{1}{2 C} Q_{0}^{2} \cos ^{2}(\omega t+\phi)
$$

Energy in Inductor

$$
\begin{gathered}
U_{B}(t)=\frac{1}{2} L \omega^{2} Q_{0}^{2} \sin ^{2}(\omega t+\phi) \\
\omega=\frac{1}{\sqrt{L C}} \quad \Downarrow \\
U_{B}(t)=\frac{1}{2 C} Q_{0}^{2} \sin ^{2}(\omega t+\phi)
\end{gathered}
$$

Therefore,

$$
U_{E}(t)+U_{B}(t)=\frac{Q_{0}^{2}}{2 C}
$$

Inductor-Capacitor Circuits

Solving a LC circuit problem; Suppose $\omega=1 / \operatorname{sqrt}(L C)=3$ and given the initial conditions,

$$
\begin{aligned}
& Q(t=0)=5 C \\
& I(t=0)=15 A
\end{aligned}
$$

Solve find $\mathbf{Q}_{\mathbf{0}}$ and ϕ_{0}, to get complete solution using,

$$
\begin{aligned}
& Q(t=0)=5=Q \cos \left(0+\phi_{0}\right) \\
& I(t=0)=15=-Q \omega \sin \left(0+\phi_{0}\right)=-3 Q \sin \left(0+\phi_{0}\right)
\end{aligned}
$$

and we find,

$$
\begin{aligned}
& (5)^{2}+\left(-\frac{15}{3}\right)^{2}=Q^{2}\left[\sin ^{2}\left(\phi_{0}\right)+\cos ^{2}\left(\phi_{0}\right)\right]=Q^{2}, \quad Q=5 \sqrt{2} \\
& \phi_{0}=\text { inv.tan }\left(-\frac{15}{5 \cdot 3}\right), \quad \phi_{0}=-45^{\circ}
\end{aligned}
$$

Mathematical Insert

The following are all equally valid solutions

$$
\begin{aligned}
& Q(t)=Q_{0} \cos \left(\omega t+\phi_{0}\right) \\
& Q(t)=Q_{0} \sin \left(\omega t+\phi_{1}\right) \\
& Q(t)=Q_{0}\left(\cos (\omega t) \cos \left(\phi_{0}\right)-\sin (\omega t) \sin \left(\phi_{0}\right)\right) \\
& Q(t)=A \cos (\omega t)+B \sin (\omega t)
\end{aligned}
$$

The LC circuit eqn is the analog of the spring force eqn

$$
\omega=\frac{1}{\sqrt{L C}}
$$

$$
m \frac{d^{2} x}{d t^{2}}=-K x
$$

$$
\omega=\sqrt{\frac{k}{m}}
$$

Inductor-Capacitor-Resistor Circuit

$$
\begin{aligned}
& 0=\frac{Q}{C}+R I+L \frac{d^{2} Q}{d t^{2}} \\
& 0=L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{Q}{C}
\end{aligned}
$$

Solution will have form of
$Q(t)=A e^{-\alpha t} \cos \left(\omega^{\prime} t+\phi\right)$
If, $\frac{1}{L C}>\frac{R^{2}}{4 L^{2}}$

Inductor-Capacitor-Resistor Circuit
 3 solutions, depending on L, R,C values

(b) Critically damped circuit (larger R)

$$
\frac{1}{L C}=\frac{R^{2}}{4 L^{2}}
$$

$$
\frac{1}{L C}>\frac{R^{2}}{4 L^{2}}
$$

(c) Overdamped
circuit (very large R)

$$
\frac{1}{L C}<\frac{R^{2}}{4 L^{2}}
$$

Inductor-Capacitor-Resistor Circuit Solving for all the terms

$$
\begin{aligned}
& \qquad(t)=A e^{-\alpha t} \cos \left(\omega^{\prime} t+\phi\right) \\
& =A e^{-\left(\frac{R}{2 L}\right) t} \cos \left(\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} t+\phi\right) \\
& \quad \alpha=\frac{R}{2 L} \text { and } \omega^{\prime}=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} \\
& \text { Solution for underdamped circuit; } \frac{1}{L C}>\frac{R^{2}}{4 L^{2}}
\end{aligned}
$$

For other solutions, use starting form, solve for λ and λ^{\prime},

$$
Q(t)=A e^{-\lambda t}+B e^{-\lambda^{\prime} t}
$$

For next time

- Homework \#10 [due Wednesday]
- Quiz on Friday: Faraday’s Law, Inductance and Inductors

