Course Updates

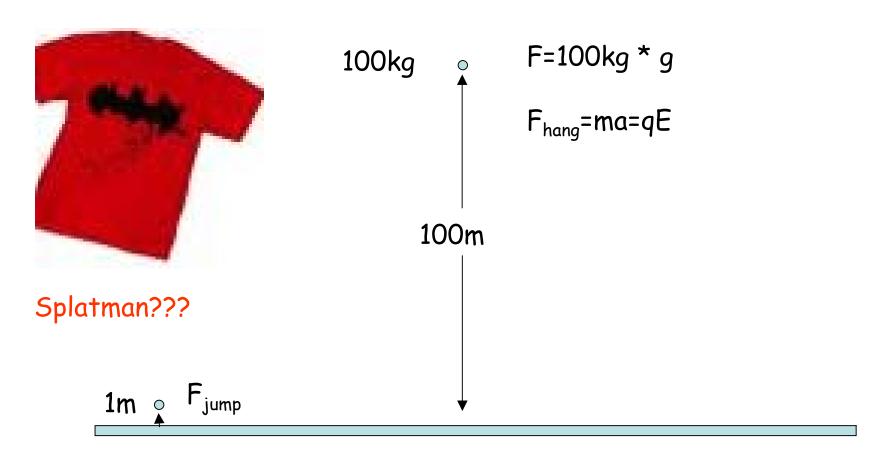
http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

- 1) Updates posted on web
- 2) Online HW (Monday), written problems Wednesday
- 3) Written problems: 21.57, 21.74
- 4) Chapter 21 this week, Chapter 22 next (all this information on web page)

Coulomb Man - Hall of Fame or Shame?

<E> = 3,330,000 V

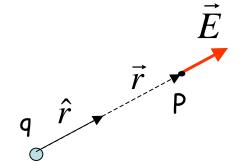

(367,000 9V batteries)

What will be his fate?

Lightning Man?

Coulomb Man - Hall of Fame or Shame?

 $F_{jump} = 10,000*F_{hang}!!! = 10,000g$

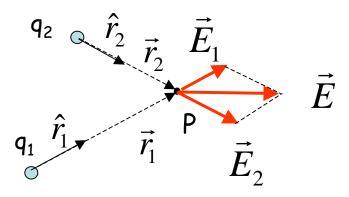

What will be his fate?

Electric Field Calculations

Review

E for a point charge q:

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 \ r^2} \hat{r}$$



What if more than one charge?

Use superposition.

$$\vec{E} = \frac{q_1}{4\pi\varepsilon_0 r_1^2} \hat{r}_1 + \frac{q_2}{4\pi\varepsilon_0 r_2^2} \hat{r}_2$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i^2} \, \hat{r}_i$$

Can do for any number of charges.

Fun with calculus.

 $d\vec{E}$

What if we have a distribution of charge?

Q - charge of distribution.

dq - element of charge.

dÉ - contribution to É due to dq.

Can write $dq = \rho dV$; ρ is the charge density.

density.
$$\frac{dq}{dr} \hat{r} = \frac{1}{r} \int \frac{\rho dV}{r} \hat{r}$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i^2} \hat{r}_i \to \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{dq}{r^2} \hat{r} = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho dV}{r^2} \hat{r}$$

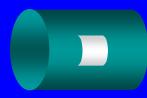
Example: Field on the axis of a line of charge.

E at P?

Result:
$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{(x_0 - L)(x_0)} \hat{i}$$

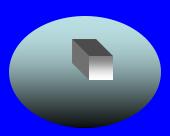
What if $L \rightarrow 0$?

Charge Densities

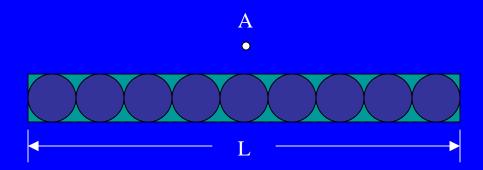

How do we represent the charge "Q" on an extended object?

total charge
$$\longrightarrow$$
 small pieces of charge dq

Line of charge:

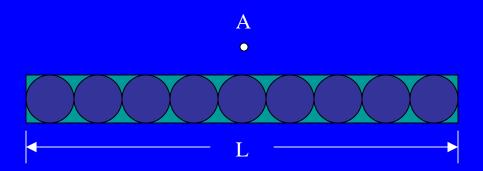

$$dq = \lambda dx$$

Surface of charge:


$$dq = \sigma dA$$

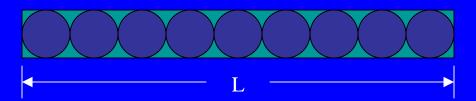
Volume of Charge:
 ρ = charge per unit volume

$$dq = \rho \, dV$$


Exercise 1:

- 1) A finite line of positive charge is arranged as shown. What is the direction of the Electric field at point A?
 - a) up
 - b) left
 - c) Right
 - d) up and left
 - e) up and right

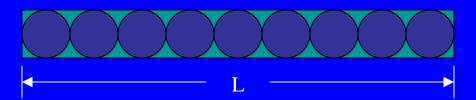
Exercise 1:



- 1) A finite line of positive charge is arranged as shown. What is the direction of the Electric field at point A?
 - a) up
 - b) left
 - c) Right
 - d) up and left
 - e) up and right

Exercise 1:

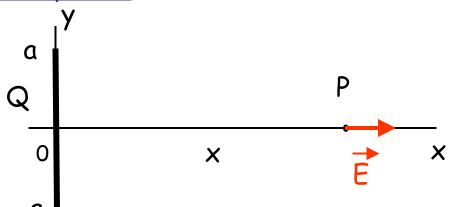
В


0

- 2) What is the direction of the Electric field at point B?
 - a) up
 - b) left
 - c) Right
 - d) up and left
 - e) up and right

0

- 2) What is the direction of the Electric field at point B?
 - a) up
 - b) left
 - c) Right
 - d) up and left
 - e) up and right


Example: Field of a line of charge on y axis.

E at P? Use symmetry.

Result:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x\sqrt{x^2 + a^2}} \hat{i} \qquad -a$$

 λ = Q/(2a) = linear charge density

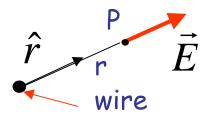
What if $a \rightarrow 0$?

What if $a \rightarrow \infty$? (Long straight wire)

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x\sqrt{x^2 + a^2}} \hat{i} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{xa\sqrt{(x/a)^2 + 1}} \hat{i}$$

$$\rightarrow \frac{1}{2\pi\varepsilon} \frac{\lambda}{x} \hat{i}$$
More generally:
$$\vec{E} = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r} \hat{r}$$

$$\to \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{x} \hat{i}$$

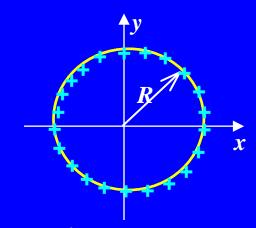

$$\hat{r}$$
 \vec{E} wire

$$\vec{E} = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r} \hat{r}$$

 \hat{r} \vec{E} Important result: Infinite line of charge

Infinite Line of Charge

$$\vec{E} = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r} \hat{r}$$



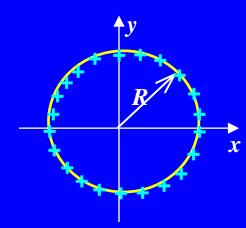
The Electric Field produced by an infinite line of charge is:

- everywhere perpendicular to the line
- is proportional to the charge density
- decreases as 1/r.
- later on: Gauss' Law makes this clearer

Exercise 2

• Consider a circular ring with total charge +q. The charge is spread uniformly around the ring, as shown, so there is $\lambda = q/2\pi R$ charge per unit length.

- The electric field at the origin is
 - (a) zero


(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{2\pi\lambda}{R}$$

(c)
$$\frac{1}{4\pi\varepsilon_0} \frac{\pi R\lambda}{R^2}$$

Exercise 2

• Consider a circular ring with total charge +q. The charge is spread uniformly around the ring, as shown, so there is $\lambda = q/2\pi R$ charge per unit length.

The electric field at the origin is

(a) zero

(b)
$$\frac{1}{4\pi\varepsilon_0} \frac{2\pi\lambda}{R}$$

(c)
$$\frac{1}{4\pi\varepsilon_0} \frac{\pi R\lambda}{R^2}$$

- The key thing to remember here is that the total field at the origin is given by the **vector sum** of the contributions from all bits of charge.
- If the total field were given by the *algebraic* sum, then (b) would be correct (give it a try) ... but we're dealing with vectors here, *not* scalars!
- Note that the *E* field at the origin produced by one bit of charge is exactly **cancelled** by that produced by the bit of charge diametrically opposite!!
- Therefore, the <u>VECTOR SUM</u> of all these contributions is <u>ZERO</u>!!

Example: Field on axis of a ring of charge.

E at P?

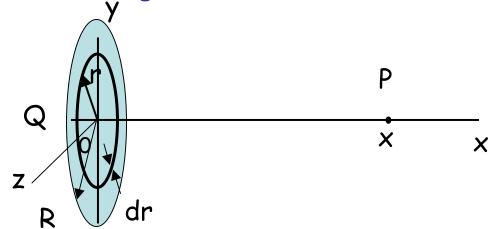
Here use symmetry.

Result:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Qx}{(x^2 + a^2)^{3/2}} \,\hat{i}$$

Result for x = 0?

Result for $x \gg a$?



Example: Field on axis of a disk of charge.

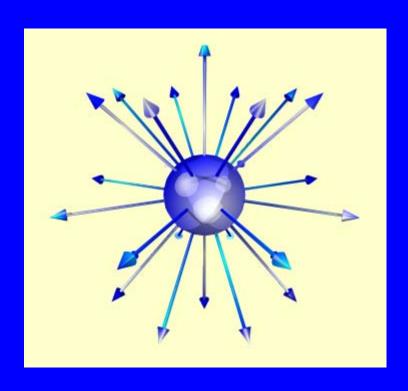
E at P?

How to do?

Integrate over rings of charge.

Result:

$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{1}{\sqrt{(R^2/x^2) + 1}} \right] \hat{i} \quad \text{of surface charge density} = \text{charge/area}$$

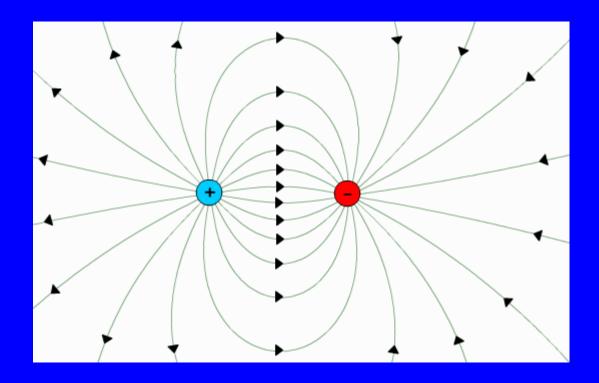

Result for $R \rightarrow \infty$?

$$\vec{E} = \frac{\sigma}{2\varepsilon_0} \left[1 - \frac{1}{\sqrt{(R^2/x^2) + 1}} \right] \hat{i} \rightarrow \frac{\sigma}{2\varepsilon_0} \hat{i}$$
1. Perpendicular 2. Independent of d. 3. Away/towards.

Summary:

- 1. Have shown that we can use calculus to determine electric fields for a few special charge distributions.
- 2. Method important. Know how to do.
- 3. Solutions for infinite line of charge and infinite plane important. We will see these again.
- 4. For most problems, we cannot solve them analytically, but we can solve using computer methods.

Electric Field Lines



Direction & Density of Lines represent

Direction & Magnitude of *E*

Point Charge:
Direction is radial
Density α 1/R²

Electric Field Lines

Dipole Charge Distribution:
Direction & Density
much more interesting...

Friday

Weekend fun?

- Get cracking on HW
- You have all you should need to do the HW
- Office Hours immediately after this class (9:30 - 10:00) in WAT214 (? 1-1:30 MWF)
- Other times by arrangement, however
 - My day is very full with meetings
 - If there are structural problems, I can try to arrange an alternative, regular time
- Don't fall behind first Quiz next week

16	6:00		[Argonne]			
	6:30					
	7:00					
	7:30	lecture		lecture		lecture
	8:00	prep	lecture	prep	lecture	prep
_	8:30	PHYS272	prep	PHYS272	prep	PHYS272
	9:00	lecture		lecture		lecture
class	9:30	Off. Hours	PHYS476	Office	PHYS476	Office
	10:00		lecture	hours	lecture	hours
MWF)	10:30	ANITA	xFEL			xFEL
V(11:00	[Collab]	mtg	LAPD	ASIC	FEL
• • • • • • •	11:30		prep	EE	work	science
	12:00		Lunch	[EFI]	Lunch	
- 14	12:30	Lunch	PHYS476	Lunch		Lunch
er	13:00	ID Lab	Lab		PHYS476	
•	13:30	Facilities	FEL	LAPD	Lab.	ASIC
	14:00	AMBER	Pl's mtg	work		work
	14:30	Group	Pixel det	STURM		Belle
	15:00	DAQ	Group	xTOP	•	local
	15:30	iTOP		mech	Physics	analysis
tm, to	16:00	PHYS476	Pixel det	[Nagoya]	Dept.	meeting
try to	16:30	Lab	work	iTOP	Colloq.	
•	17:00	prep		prep	fDIRC	
	17:30				CRT mtg	TG's
	18:00					
	18:30					
1.	19:00					
eek	19:30					
	20:00					
	20:30					
	21:00			Belle2		
	21:30			PID		
	22:00			[KEK]		

Spring 2009

Monday Tuesday

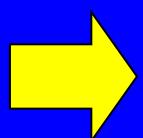
LAPD

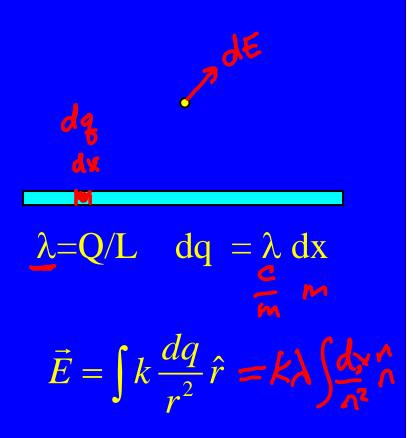
5:00

5:30

"What the integrals have to do with the force of the electric field... Are the integrals actually necessary for understanding this?"

YOU BETCHA!


Summation becomes an integral (be careful with vector nature)


Symmetry is often helpful

Linear charge density is often useful

$$\vec{E} = \sum_{i} k \frac{Q_i}{r_i^2} \hat{r}_i$$

