Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) Assignment \#8 available
2) Chapter 28 this week

| |lagnetism|

Biot-Savart's Law (Continued)

Magnetic Fields from a long wire

An infinitely long wire along the y-axis with the current moving $+y$. What is the magnetic field at position x on the x-axis? By symmetry we argue the field must be in the - z direction only.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \quad \vec{B}=I \frac{\mu_{0}}{4 \pi} \int \frac{d \vec{l} \times \hat{r}}{r^{2}}=I \frac{\mu_{0}}{4 \pi} \int \frac{\sin \phi}{r^{2}} d l(-\hat{z}) \\
& \underbrace{P}_{x} x=\frac{-\hat{z} I \mu_{0}}{4 \pi} \int \frac{\sin \phi}{r^{2}} d y ; \quad \begin{array}{l}
\text { Since, sin}(\phi)= \\
\sin (\pi-\phi), \text { we have }
\end{array} \\
& \int \frac{\sin \phi}{r^{2}} d y=\int \frac{\sin (\pi-\phi)}{r^{2}} d y=\int_{-\infty}^{+\infty} \frac{x}{r^{3}} d y=x \int_{-\infty}^{+\infty} \frac{1}{\left(y^{2}+x^{2}\right)^{3 / 2} d y} \\
& =x\left[\frac{1}{x^{2}} \frac{y}{\sqrt{y^{2}+x^{2}}}\right]_{-\infty}^{+\infty}=\frac{2}{x} \quad \vec{B}=\frac{\mu_{0} I}{2 \pi x}(-\hat{z})
\end{aligned}
$$

Magnetic Fields from a long wire

$$
|\vec{B}|=\frac{\mu_{0} I}{2 \pi r}
$$

Magnetic Fields from a wire segment

Here the problem is the same except wire not infinitely long!

$$
\vec{B}=I \frac{\mu_{0}}{4 \pi} \int \frac{d \vec{l} \times \hat{r}}{r^{2}}=\frac{-\hat{z} I \mu_{0}}{4 \pi} \int \frac{\sin \phi}{r^{2}} d y ;
$$

$$
\int \frac{\sin \phi}{r^{2}} d y=\int \frac{\sin (\pi-\phi)}{r^{2}} d y=x \int_{-b}^{+a} \frac{1}{\left(y^{2}+x^{2}\right)^{3 / 2}} d y
$$

$$
=x\left[\frac{1}{x^{2}} \frac{y}{\sqrt{y^{2}+x^{2}}}\right]_{-b}^{+a}=\frac{1}{x}\left\{\frac{a}{\sqrt{a^{2}+x^{2}}}+\frac{b}{\sqrt{b^{2}+x^{2}}}\right\}
$$

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0} I}{4 \pi x}\left\{\frac{a}{\sqrt{a^{2}+x^{2}}}+\frac{b}{\sqrt{b^{2}+x^{2}}}\right\}(-\hat{z}) \\
& =\frac{\mu_{0} I}{4 \pi x}\left\{\sin \theta_{a}+\sin \theta_{b}\right\}(-\hat{z})
\end{aligned}
$$

Putting it all together

- We know that a current-carrying wire can experience force from a \boldsymbol{B}-field.
- We know that a a current-carrying wire produces a Bfield.
- Therefore: We expect one current-carrying wire to exert a force on another current-carrying wire:

- Current goes together \rightarrow wires come together
- Current goes opposite \rightarrow wires go opposite

Force between two parallel long wires

Suppose we have two // wires with $\stackrel{\text { コ }}{ }$ Currents I' and I which are distance r apart. The bottom wire will produce a magnetic field of

$$
|\vec{B}|=\frac{\mu_{0} I}{2 \pi r}
$$

on the top wire. The force on a length L on the top wire will be

$$
|F|=I^{\prime} L B=I^{\prime} L \frac{\mu_{0} I}{2 \pi r}
$$

The force is downward in the direction of the other wire. Force/unit length is
($1^{\text {st }}$ derived by Mr. Ampere)

$$
\frac{|F|}{L}=\frac{\mu_{0} I I^{\prime}}{2 \pi r}
$$

Question 1:

\rightarrow Two slack wires are carrying current in opposite directions. What will happen to the wires? They will:
a) attract
b) repel
C) twist due to torque

Question 1:

\rightarrow Two slack wires are carrying current in opposite directions. What will happen to the wires? They will:
a) attract
b) repel
C) twist due to torque

Question 2:

\rightarrow Now, two slack wires are carrying current in the same direction. What will happen to the wires? They will:
a) attract
b) repel
c) twist due to torque

Question 2:

\Rightarrow Now, two slack wires are carrying current in the same direction. What will happen to the wires? They will:
a) attract
b) repel
c) twist due to torque
a) Find B due to one wire at the position of the other wire
b) Use $\vec{F}=\vec{L} \times \vec{B}$ to find the direction of F in each case
a: Point your thumb down, your fingers wrap in the direction of B around the wire: The direction of B due to the left wire at the position of the right wire is out of the screen.
b: I is up, B is out of the screen, so F is to the right. \Rightarrow the force is repulsive.

Question 3

- A current I flows in the $+y$ direction in an infinite wire: a current I also flows in the loop as shown in the diagram.
- What is F_{x}, the net force on the loop in the x-direction?
(a) $\boldsymbol{F}_{x}<0$
(b) $\boldsymbol{F}_{x}=0$
(c) $\boldsymbol{F}_{x}>0$

Question 3

- A current I flows in the $+y$ direction in an infinite wire: a current I also flows in the loop as shown in the diagram.
- What is F_{x}, the net force on the loop in the x-direction?
(a) $F_{x}<0$
(b) $\boldsymbol{F}_{x}=0$
(c) $\boldsymbol{F}_{x}>0$
-Forces cancel on the top and bottom of the loop.
- Forces do not cancel on the left and right sides of the loop.
- The left segment is in a larger magnetic field than the right
- Therefore, $F_{\text {left }}>F_{\text {right }}$

Magnetic Field of a wire loop

Suppose a wire loop is centered at the origin in the $y-z$ plane. What is
the B field along the center line axis (x-axis)? By symmetry, the net B field must be only along the x-axis as the y and z components will cancel.

$$
\begin{array}{rlrl}
d \vec{B}= & \frac{\mu_{0}}{4 \pi} \frac{I d l \times \hat{r}}{r^{2}} & B_{x} & =\frac{\mu_{0} I}{4 \pi} \int\left(\frac{1}{r^{2}}\right)\left(\frac{a}{r}\right) d l=\frac{\mu_{0} I}{4 \pi} \frac{a}{r^{3}} \int d l \\
d B_{x} & =d B \cos \theta=d B \frac{a}{R} & =\frac{\mu_{0} I}{4 \pi} \frac{a}{r^{3}} 2 \pi a=\frac{\mu_{0} I a^{2}}{2 \sqrt{x^{2}+a^{2}}}{ }^{3} \\
d B & =\frac{\mu_{0} I d l}{4 \pi r^{2}} & \quad \text { For } x \gg a: & B_{x}=\frac{\mu_{0} I a^{2}}{2 x^{3}}
\end{array}
$$

Circular Loop, anywhere on axis

$$
B_{z}=\frac{\mu_{0} I R^{2}}{2\left(z^{2}+R^{2}\right)^{3 / 2}} \quad B_{z}(z \gg R) \approx \frac{\mu_{0} I R^{2}}{2 z^{3}}
$$

Expressed in terms of the magnetic moment $\mu=I \pi R^{2}$

Question 4

- Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the $+z$ direction.
- What is the magnetic field $B_{2}(A)$ at point \boldsymbol{A}, the midpoint between the two loops?
(a) $\boldsymbol{B}_{\mathbf{z}}(\mathrm{A})<0$
(b) $B_{z}(A)=0$
(c) $\boldsymbol{B}_{z}(\mathrm{~A})>0$

Question 4

- Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the $+z$ direction.
- What is the magnetic field $B_{2}(A)$ at point \boldsymbol{A}, the midpoint between the two loops?
(a) $\boldsymbol{B}_{\mathbf{z}}(\mathrm{A})<0$
(b) $B_{z}(A)=0$
(c) $\boldsymbol{B}_{z}(\mathrm{~A})>0$
- The right current loop gives rise to $B_{z}<0$ at point A .
- The left current loop gives rise to $B_{z}>0$ at point A.
- From symmetry, the magnitudes of the fields must be equal.
- Therefore, $B(\mathrm{~A})=0$

Question 5

- Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the $+z$ direction.

- What is the magnetic field $B_{z}(B)$ at point B, just to the right of the right loop?
(a) $\boldsymbol{B}_{\mathbf{z}}(\mathrm{B})<\mathbf{0}$
(b) $B_{z}(B)=0$
(c) $\boldsymbol{B}_{\mathbf{z}}(\mathrm{B})>0$

Question 5

- Equal currents I flow in identical circular loops as shown in the diagram. The loop on the right (left) carries current in the ccw (cw) direction as seen looking along the $+z$ direction.
(a) $B_{z}(B)<0$
(b) $B_{z}(B)=0$
(c) $\boldsymbol{B}_{z}(\mathrm{~B})>0$
- The signs of the fields from each loop are the same at B as they are at A
- However, point B is closer to the right loop, so its field wins!

4 more lectures until Spring Break

- HW \#8 \rightarrow need magnetic equivalent of Gauss' Law, next time
- Office Hours immediately after this class (9:30-10:00) in WAT214 (1:30-2/1-1:30 M/WF)
- Last day to drop soon - grade feedback on webpage

