Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Reminders:

1) HW \# 7 due today
2) Assignment \#8 available
3) Chapter 28 this week

The Hall Effect

- Is current due to motion of positive or negative

- Positive charges moving CCW experience upward force
- Upper plate at higher potential

- Negative charges moving clockwise experience upward force
- Upper plate at lower potential Equilibrium between electrostatic \& magnetic forces:

$$
F_{\mathrm{up}}=q v_{\text {drift }} B \quad F_{\text {down }}=q E_{\text {induced }}=q \frac{V_{\mathrm{H}}}{\mathrm{w}} \quad V_{\mathrm{H}}=v_{\text {drift }} B w=\text { "Hall Voltage" }
$$

- This type of experiment led to the discovery (E. Hall, 1879) that current in conductors is carried by negative charges (not always so in semiconductors).
- Can be used as a B-sensor.

Example

Flight over North Pole
$V_{\mathrm{H}}=v_{\text {drift }} B w=$ "Hall Voltage"
$600 \mathrm{mi} / \mathrm{hr}=268 \mathrm{~m} / \mathrm{s}$ B vertical $\sim 0.5 \times 10^{-4} \mathrm{~T}$ Wingspan ~ 30m

Sources of Magnetic Fields (chap 28)

In Chapter 27, we considered the magnetic field effects on a moving charge, a line current and a current loop.

Now in Chap 28, we consider the magnetic fields that are created by:

- moving charges
- line current elements (Biot-Savart Law)
- line of current
- current loops

Magnetic Fields from a moving charge

Magnetic fields are created by a moving charge. If the charge is stationary, there is NO magnetic field. If the charge is moving, the magnetic field law is

$$
\vec{B}=\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}}
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}
$$

Use right hand to get direction of field

Magnetic Fields from a moving charge at a position perpendicular to velocity

Example

A $q=6 \mu C$ point charge at the origin is moving with a $v=8 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the $+y$ direction. What is the B field it produces at the following points?
A) $x=0.5 m, y=0, z=0$

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0}}{4 \pi} \frac{q \vec{v} \times \hat{r}}{r^{2}} \quad \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
& =\frac{\mu_{0}}{4 \pi} \frac{\left(6 \times 10^{-6} \mathrm{C}\right)\left(8 \times 10^{6} \frac{m}{s} \hat{j}\right) \times \hat{i}}{(0.5 \mathrm{~m})^{2}} \\
= & -1.9 \times 10^{-5} \mathrm{~T} \hat{k}
\end{aligned}
$$

B) $x=0 m, y=0.5, z=0 m$

$$
\begin{aligned}
& \vec{B}=0 \quad \text { since } \\
& \vec{v} \text { and } \hat{r} \text { parallel. }
\end{aligned}
$$

Magnetic Fields from a current element

Suppose we have a current element of length dll, cross sectional area A and particle density n, \#charges/volume. The total charge, $d Q$ is

$d Q=n q A d l$. And recall that current is $I=n q \vee A$. The B field becomes,

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{d Q \vec{v} \times \hat{r}}{r^{2}}=\frac{\mu_{0}}{4 \pi} n q A \frac{\vec{v} \times \hat{r}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}
$$

Vector, $\overrightarrow{d l}$, is the length of the current element in the direction of the current flow. This is called the Biot-Savart Law

Since n above is very large, a current (element) will give a much bigger magnetic field than that of a single charge.

Biot-Savart Law

Magnetic Fields from a arbitrary wire

If we have an arbitrary wire with current I flowing, and we wish to get the B at a specific point from the entire wire, we integrate the formula

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}
$$

and obtain a line integral of a cross produc \dagger

$$
\vec{B}=I \frac{\mu_{0}}{4 \pi} \int \frac{d \vec{l} \times \hat{r}}{r^{2}}
$$

Question 1:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point A?

A)	B)	C)	D)	E)
$+x$	$-x$	$+y$	$+z$	$-z$

Question 1:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point A?
A)
$+x$
B)
C)
$+y$
D)
E)
$-z$

Question 2:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points A,B, \& C lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point B?
A)
B)
C)
D)
E)
$\begin{array}{lllll}+x & -x & +y & +z & -z\end{array}$

Question 2:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point B ?
A)
B)
C)
D)
E)
$+x$
$-x$
$+y$
$+z$
-z

Question 3:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points A,B, \& C lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point C?
A)
B)
C)
D)
E)
$+x$
$-x$
$+y$
$+z$
-z

Question 3:

A current carrying wire (with no remarkable symmetry) is oriented in the $x-y$ plane. Points $\mathrm{A}, \mathrm{B}, \& \mathrm{C}$ lie in the same plane as the wire. The z axis points out of the screen.

What direction is the magnetic field contribution from the segment $d l$ at point C?
A)
B)
C)
D)
$+z$
E)
-z
$d B$ points in the direction of $d \vec{l} \times \vec{r}$

$$
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \vec{r}}{r^{2}}
$$

A: $d l$ is to the right, and r is up $\Rightarrow d B$ is out of the page
B: $d l$ is to the right, and r is up and right $\Rightarrow d B$ is out of the page
$\mathrm{C}: d l$ is to the right, and r is down and right $\Rightarrow d B$ is into the page

Conclusion: at every point above the wire, $d B$ is \odot. Below the wire , $d B$ is \otimes

Would any of your answers for questions 1-3 change if we integrated $d l$ over the whole wire?

NO.

Why or why not?

$$
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \vec{r}}{r^{2}}
$$

At point A : $d l$ is to the right, and is up $\Rightarrow d B$ is out of the page At point $\mathrm{B}: d l$ is to the right, and r is up and right $\Rightarrow d B$ is out of the page At point $\mathrm{C}: d l$ is to the right, and r is down and right $\Rightarrow d B$ is into the page

For every point in the $x-y$ plane and every piece of wire $d l$: every $d l$ and every r are always in the $x-y$ plane Since $d B$ must be perpendicular to r and $d l, d B$ is always in the $\pm z$ direction!

Conclusion:

At every point above the wire, the $d B$ due to every piece $d l$ is \odot.
Below the wire, the $d B$ due to every piece $d l$ is \otimes

Magnetic Fields from a long wire

An infinitely long wire along the y-axis with the current moving $+y$. What is the magnetic field at position x on the x-axis? By symmetry we argue the field must be in the - z direction only.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \quad \vec{B}=I \frac{\mu_{0}}{4 \pi} \int \frac{d \vec{l} \times \hat{r}}{r^{2}}=I \frac{\mu_{0}}{4 \pi} \int \frac{\sin \phi}{r^{2}} d l(-\hat{z}) \\
& \underbrace{P}_{x} x=\frac{-\hat{z} I \mu_{0}}{4 \pi} \int \frac{\sin \phi}{r^{2}} d y ; \quad \begin{array}{l}
\text { Since, sin}(\phi)= \\
\sin (\pi-\phi), \text { we have }
\end{array} \\
& \int \frac{\sin \phi}{r^{2}} d y=\int \frac{\sin (\pi-\phi)}{r^{2}} d y=\int_{-\infty}^{+\infty} \frac{x}{r^{3}} d y=x \int_{-\infty}^{+\infty} \frac{1}{\left(y^{2}+x^{2}\right)^{3 / 2}} d y \\
& =x\left[\frac{1}{x^{2}} \frac{y}{\sqrt{y^{2}+x^{2}}}\right]_{-\infty}^{+\infty}=\frac{2}{x} \quad \vec{B}=\frac{\mu_{0} I}{2 \pi x}(-\hat{z})
\end{aligned}
$$

Magnetic Fields from a long wire

Into the $2^{\text {nd }}$ half

- HW \#8 \rightarrow need magnetic equivalent of Gauss' Law
- Office Hours immediately after this class (9:30-10:00) in WAT214 (1:30-2/1-1:30 M/WF)
- Last day to drop soon - grade feedback on webpage

