Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

Professor Gary Vamer
Updated 1/13/2010

News:

- True news -- we will have a grader
- No labs first week of class (begin week of Jan. 18-22)
- In order to complete the online homework, you must register for a Mastering Physics account
- Please refresh link below regularly to get updated assignments
- Online part of Assignment I (VARNERPHYS272) in Mastering Physics due Monday, Jan. 18, 2009
- Tun in 21.57 and 21.74 for grading
- Hand-in homework first thing Wednesday, Jan. 20, 2009

Electric Charge

Source of electric and magnetic phenomena.
Will study E\&M much of the semester.
A.) Generating: rubbing transfers charge.

- glass with silk
- lucite with fur

Two types of charge (+ and -).
Ben Franklin (1706-1790): charge on glass rod is +.

> Like charges repel.
> Unlike charges attract.

Demo: Pith ball

Conductors and Insulators

Insulators - charge (electrons) not free to move. Examples: glass, porcelin.

Conductors - electrons free to move.
Example: Copper-1 free electron per atom.

There are no perfect insulators or conductors!
Demo: Electroscope

Demo: Charging by induction.

Coulombs Law

Applies to point charges.
magnitude $\begin{gathered}\left.\mathrm{k}=\frac{k\left|q_{1} q_{2}\right|}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \right\rvert\, \\ \mathrm{Nm}^{2} / \mathrm{c}^{2}\end{gathered}$

$$
\approx 9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} C^{2} /{N m^{2}}^{2}
$$

direction: along line between two charges attractive if unlike charges repulsive if like charges

$$
\begin{aligned}
& \text { Looks like: } \\
& F_{G}=\frac{G m_{1} m_{2}}{r^{2}}
\end{aligned}
$$

$$
F \text { is a vector! }
$$

Note forces are equal and opposite (Newton's Third Law)

Up in the Sky... it's Coulomb Man!

100 kg -- how much to levitate 100 meters skyward?

Up in the Sky... it's Coulomb Man!

100kg -- how much to levitate 100 meters skyward?

Up in the Sky... it's Coulomb Man!
 (but not for long!)

Why?

Coulorsb's Law (Jo suiss up)

If there are more than two charges present, the total force on any given charge is just the vector sum of the forces due to each of the other charges:

(94)

92

MATH:
$\vec{F}_{1}=\frac{k q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}+\frac{k q_{1} q_{3}}{r_{13}^{2}} \hat{r}_{13}+\frac{k q_{1} q_{4}}{r_{14}^{2}} \hat{r}_{14} \longrightarrow \vec{E} \equiv \frac{\vec{F}_{1}}{q_{1}}=\frac{k q_{2}}{r_{12}^{2}} \hat{r}_{12}+\frac{k q_{3}}{r_{13}^{2}} \hat{r}_{13}+\frac{k q_{4}}{r_{14}^{2}} \hat{r}_{14}$

Electric Field

Coulomb's Law - Problem:
Action at a distance:
speed of propagation
not considered.

Another approach:

1. Charge in space creates electric field. \vec{E}
2. Field acts on $2^{\text {nd }}$ charge.

Field propagates through space with speed of light.

Electric fields

What is a Field?

A FIELD is something that can be defined anywhere in space

- A field represents some physical quantity (e.g., temperature, wind speed, force) that is a function of 3-D spatial position (x, y, z)
- It can be a scalar field (e.g., temperature field)
- It can be a vector field (e.g., force field or electric field)

A Scalar Field

These isolated temperatures sample the scalar field (you only learn the temperature at the point you choose, but T is defined everywhere (x, y)

A Vector Field

Wind speed (length, direction)

Electric Field

\vec{E} How to determine?
Put small test charge at point in space.

Direction? What if q_{0} is negative?

Why small test charge?
More accurately:

$$
\vec{E}=\lim _{q_{0 \rightarrow 0}} \frac{\vec{F}_{q_{0}}}{q_{0}}
$$

Electric Field

Can place test charge at many points to map \vec{E}

Example: Electric Field around charge Q.

Force on charge at point in electric field?

$$
\vec{F}_{q}=q \vec{E}
$$

Electric Field

\vec{E} for point charge q?
Can calculate:
$E=\frac{F_{q_{0}}}{q_{0}}=\frac{\frac{\left|q q_{0}\right|}{4 \pi \varepsilon_{0} r^{2}}}{q_{0}}=\frac{|q|}{4 \pi \varepsilon_{0} r^{2}}$
magnitude
$\vec{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$
magnitude and direction. r defined from q !

Example: a.) E at P?

Two equal, but opposite charges are placed on the x axis. The positive charge is placed at to the left of the origin and the negative charge is placed to the right, as shown in the figure above.

1) What is the direction of the electric field at point B ?
OUp ODown OLeft ORight OZero

Electric Field

\vec{E} for point charge q:

$$
\vec{E}=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}
$$

What if more than one charge? Use superposition.

$$
\vec{E}=\frac{q_{1}}{4 \pi \varepsilon_{0} r_{1}^{2}} \hat{r}_{1}+\frac{q_{2}}{4 \pi \varepsilon_{0} r_{2}^{2}} \hat{r}_{2}
$$

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}^{2}} \hat{r}_{i}
$$

The electric field Eat a point in space is defined as the force per unit charge at that point.

$\vec{E} \equiv \frac{\vec{F}}{q}$

Electric field due to a point charged particle

$$
\vec{E}=k \frac{Q}{r^{2}} \hat{r}
$$

Superposition

$$
\vec{E}=\sum_{i} k \frac{Q_{i}}{r_{i}^{2}} \hat{r}_{i}
$$

93

Using Symmetry: Electric Field

Example: a.) E at P ?

b.) Force on $3^{\text {rd }}$ charge $q_{0}=2 n C$ at P ?

Exercise (UIL2A2)

Two charges, \boldsymbol{q}_{1} and \boldsymbol{q}_{2}, fixed along the x-axis as shown produce an electric field, \boldsymbol{E}, at a point $(x, y)=(0, d)$ which is directed along the negative \uparrow y-axis.

- Which of the following is true?
(a) Both charges \boldsymbol{q}_{1} and \boldsymbol{q}_{2} are positive
(b) Both charges \boldsymbol{q}_{1} and \boldsymbol{q}_{2} are negative

(c) The charges \boldsymbol{q}_{1} and $\boldsymbol{q}_{\mathbf{2}}$ have opposite signs

Exercise (UIL2A2)

Two charges, \boldsymbol{q}_{1} and \boldsymbol{q}_{2}, fixed along the x-axis as shown produce an electric field, \boldsymbol{E}, at a point $(x, y)=(0, d)$ which is directed along the negative \uparrow y-axis.

- Which of the following is true?
(a) Both charges \boldsymbol{q}_{1} and \boldsymbol{q}_{2} are positive
(b) Both charges \boldsymbol{q}_{1} and \boldsymbol{q}_{2} are negative
(c) The charges \boldsymbol{q}_{1} and \boldsymbol{q}_{2} have opposite signs

(a)

(b)

(c)

Motion of a charged particle in an electric field

$$
\begin{aligned}
& \vec{F}=q \vec{E} \\
& \vec{a}=\frac{\vec{F}}{m}=\frac{q}{m} \vec{E} \quad\left(\vec{a}=\sum \frac{\vec{F}}{m}=\frac{q}{m} \sum \vec{E}\right)
\end{aligned}
$$

Where used?

Example: An electron, starting from rest, is accelerated in a uniform electric field of $8 \times 10^{4} \mathrm{~N} / C$. Find its speed after traveling 5 cm .

Motion of Charge

A positive test charge q is released from rest at distance r away from a charge of $+Q$ and a distance $2 r$ away from a charge of +2 Q . How will the test charge move immediately after being released?
8) How will the test charge move immediately after being released?to the leftto the rightstay stillother
A
B
C
D

6) In which of the two cases shown below is the magnitude of the elctric field at the point labeled A the largest?

A) Case 1
B) Case 2
C) Same
6) In which of the two cases shown below is the magnitude of the elctric field at the point labeled A the largest?

Example

What is the direction of the electric field at point P, the unoccupied corner of the square?

$E=0$
Can't tell until know value of d
(a)
(b)
(c)
(d)

Can't tell until
know values of d and q.
(e)

Calculate E at point P. $\quad \vec{E}=\sum_{i} k \frac{Q_{i}}{r_{i}^{2}} \hat{r}_{i}$

BB
"I would hope for more example calculations involving Coulomb's law and electric field strength."
What is the direction of the electric field at point P, the unoccupied corner of the square?
Canst tell until $\begin{array}{ll}\text { until know } & \text { know values } \\ \text { value of } d & \text { of } d \text { and } q \text {. }\end{array}$
(a)

(d)
(e)

Calculate E at po $n t \vec{E}=\sum_{i} k \frac{Q_{i}}{r_{i}^{2}} \hat{r}_{i}$

Coulomb Man - Hall of Fame or Shame?

What will be his fate?
Hint: maybe another name

