Course Updates

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html
Notes for today:

1) Review of Quiz 2 (at end)
2) Assignment 5 (Mastering Physics) online and separate, written problems due Wednesday
3) Review all of Chap 21-24 for Midterm
4) Schedule for next week:
5) Monday: holiday
6) Wednesday: review
7) Friday: Midterm \#1

Last Time

Resistors in series:

Current through is same.

Voltage drop across is $I R_{i}$

$$
R_{\text {effective }}=R_{1}+R_{2}+R_{3}+\ldots
$$

Resistors in parallel:
Voltage drop across is same. Current through is V/R

$$
\frac{1}{R_{\text {effective }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

Solved Circuits

Real life example of previous circuit is a car battery and a headlamp

$\mathrm{R}=$ resistance in headlight
$\mathrm{r}=$ internal resistance in battery

Headlight

Real Battery with 12 volts and an internal resistance of 2 ohms in a circuit with a resistor of 4 ohms

$$
\varepsilon-I r=I R
$$

Rearranging:

$$
\varepsilon-I r-I R=0
$$

Can interpret this as the sum of all potential differences around a closed loop must add to zero.

Kirchoff's voltage law or loop rule.
Can define a voltage rise as positive OR a voltage fall as positive.

Electric Potential/Voltage Diagram of the circuit

Voltage drop across 2 Ohms is 4 volts

Voltage drop across 4 Ohms is 8 volts

NOTE 4Ω resistor has only 8 of the 12 volts.

Warm up Exercise

In the circuit shown, the voltage across the 2Ω resistor is 12 volts .
A) What is the emf of the battery?

A) 6 V
B) 12 V
C) 18 V
D) 24 V
E) 120 V

Warm up Exercise

In the circuit shown, the voltage across the 2Ω resistor is 12 volts.
A) What is the emf of the battery?

A) 6 V
B) 12 V
C) 18 V
D) 24 V
E) 120 V

$$
\begin{aligned}
& I_{2}=\frac{V_{2}}{R_{2}}=\frac{12 \mathrm{~V}}{2 \Omega}=6 \mathrm{~A} \\
& V_{1}=I_{1} R_{1}=(6 \mathrm{~A})(1 \Omega)=6 \mathrm{~V} \\
& \varepsilon=V_{1}+V_{2}=18 \mathrm{~V}
\end{aligned}
$$

Warm up Exercise

In the circuit shown, the voltage across the 2Ω resistor is 12 volts .

B) What is the current through the 6.00 ohm resistor?
A) 2 A
B) $3 A$
C) 4 A
D) 8 A
E) 12 A

Warm up Exercise

In the circuit shown, the voltage across the 2Ω resistor is 12 volts.

B) What is the current through the 6.00 ohm resistor?

A) $2 A$
B) $3 A$
C) $4 A$
D) 8 A
E) 12 A

$$
I_{6}=\frac{\varepsilon}{R_{6}}=\frac{18 \mathrm{~V}}{6 \Omega}=3 \mathrm{~A}
$$

Calculation 3

> In the circuit shown: $\mathrm{V}=18 \mathrm{~V}$,
> $\mathrm{R}_{1}=1 \Omega, \mathrm{R}_{2}=2 \Omega, \mathrm{R}_{3}=3 \Omega$, and $\mathrm{R}_{4}=4 \Omega$

What is V_{2}, the voltage across R_{2} ?

- Combine Resistances:

$$
R_{2} \text { and } R_{4} \text { are connected in series }=R_{24}=2+4=6 \Omega
$$

Redraw the circuit using the equivalent resistor $R_{24}=$ series combination of R_{2} and R_{4}.

(A)

(B)

(C)

Loopy-ness

Kirchoff's Voltage loop law: sum of voltages $=0$

Need to determine I
How to know which direction to go around loop?

$$
\sum_{i} V_{i}=V_{e q}
$$

$$
I=\frac{V_{e q}}{R_{e q}} \begin{aligned}
& \text { Doesn't matter, } \\
& \text { because sign of I will } \\
& \text { tell }
\end{aligned}
$$

Warning!! need Thevenin Equivalence to make General

Y\&F 25.36

The circuit shown in the figure contains two batteries, each with an emf and an internal resistance, and two resistors.
A) Find the direction and magnitude of the current in the circuit
B) Find the terminal voltage Vab of the 16.0-V battery.
$C)$ Find the potential difference Vbc of point b with respect to point c.

A.) Use Kirchoff's $16 \mathrm{~V}-1.6 \Omega I-5.0 \Omega I-1.4 \Omega I-8 V-9.0 \Omega I=0$
loop law:

$$
\begin{aligned}
& 8 V-17 \Omega I=0 \\
& I=\frac{8}{17} A=0.471 A
\end{aligned}
$$

B.) $\mathrm{V}_{\mathrm{ab}}=16 \mathrm{~V}-\mathrm{I}(1.6 \Omega)=16 \mathrm{~V}-(0.471 \mathrm{~A})(1.6 \Omega)=15.2 \mathrm{~V}$
C.) $\mathrm{V}_{\mathrm{bc}}=-\mathrm{I}(9.0 \Omega)=-(0.471 \mathrm{~A})(9.0 \Omega)=-4.24 \mathrm{~V}$

Power
 Very important use of electricity.

Suppose we have a circuit element that has a voltage drop of $\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$ and a current flow of I.

What is the change in potential energy in this circuit element?

$$
d U=\left(V_{a b}\right) d q
$$

What is the time rate change in potential energy in this circuit element?

$$
P=\frac{d U}{d t}=\left(V_{a b}\right) \frac{d q}{d t}=\left(V_{a b}\right) I
$$

Power, P, is the time rate change in energy and equals voltage \times current

$$
P=\left(V_{a b}\right) I \quad \text { Units = voltage-amps }=\text { Watts }
$$

Power

Resistor

$$
\text { Power } \mathrm{P}=\mathrm{I}(\mathrm{Va}-\mathrm{Vb})=\mathrm{IV}=\mathrm{I}(\mathrm{IR})=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}
$$

Electrical power converted to Joule heat.
EMF

$$
\begin{gathered}
\mathrm{I} \longleftarrow \frac{\mathrm{~V}_{\mathrm{a}}+\left|\left|\left|| |^{-\mathrm{V}_{\mathrm{b}}}\right.\right.\right.}{\text { Power } \mathrm{P}=\mathrm{I}(\mathrm{Va}-\mathrm{Vb})=\mathrm{I} \varepsilon}
\end{gathered}
$$

Electrical power can be + or depending on direction of I.

Power Example of Battery and resistor

What is the power in resistor R ?

$$
\mathrm{I}^{2} \mathrm{R}=2 * 2 * 4=16 \mathrm{~W}
$$

What is the power in internal resistance r ?

$$
I^{2} r=2 * 2 * 2=8 \mathrm{~W}
$$

What is the rate of energy conversion of the battery?

$$
\varepsilon I=12 * 2=24 \mathrm{~W}
$$

\Rightarrow Energy conversion rate equals sum of power in both R and r

Y\&F Problem 25.47

The capacity of a storage battery in your car is rated in amp-hours. A 12 volt battery rated at $50 \cdot A \cdot h$, can supply a 50 amps for 1 hour at 12 volts or 25 amps for 2 hours etc.
A.) What is the total energy supplied by this battery?

$$
\begin{aligned}
& P=\frac{d U}{d t}=I V=(50 \mathrm{~A})(12 \mathrm{~V})=600 \mathrm{~W} \\
& U=P t=(600 \mathrm{~W})(1 \mathrm{hr})(3600 \mathrm{~s} / \mathrm{hr})=2.16 \mathrm{MJ}
\end{aligned}
$$

B.) if a electric battery charger supplies 0.45 kW , how long does it take to fully charge a dead battery?

$$
\begin{aligned}
& U=P t \\
& t=U / P=(2.16 M J) / 0.45 \mathrm{~kW}) \\
& =4680 \mathrm{~s}=78 \mathrm{~m}
\end{aligned}
$$

gauss' Lan

Gauss \Rightarrow Coulomb

We now illustrate this for the field of the point

charge and prove that Gauss' Law implies
Coulomb's Law.
Symmetry \Rightarrow E-field of point charge is radial and
spherically symmetric
Draw a sphere of radius \mathbb{R} centered on the charge.

Why?

E normal to every point on the surface $\Rightarrow \vec{E} \bullet d \vec{A}=E d A$
E has same value at every point on the surface
\Rightarrow can take E outside of the integral!
Therefore, $\oint \vec{E} \bullet d \vec{A}=\oint E d A=E \oint d A=4 \pi R^{2} E$

- Gauss'Law $\varepsilon_{0} 4 \pi R^{2} E=Q$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{R^{2}}
$$

- We are free to choose the surface in such problems... we call this a "Gaussian" surface

Infinite Line of Charge

- Symmetry \Rightarrow E-field

-Apoly Gauss’ Law:
- On the ends, $\vec{E} \bullet d \vec{A}=0$
- On the barrel, $\oint \vec{E} \bullet d \vec{A}=2 \pi r h E \quad$ AND $q=\lambda h$

$$
E=\frac{\lambda}{2 \pi \varepsilon{ }_{0} r}
$$

we have obtained here the same result as we did last lecture using Coulomb's Law. The symmetry makes today's derivation easier.

- Gauss' Law is ALWAYS VALID!

$$
\varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=q_{\text {enclosed }}
$$

- What Can You Do With This?

If you have (a) spherical, (b) cylindrical, or (c) planar symmetry AND:

- If you know the charge (RHS), you can calculate the electric field (LHS)
- If you know the field (LHS, usually because $E=0$ inside conductor), you can calculate the charge (RHS).

Spherical Symmetry: Gaussian surface $=$ sphere of radius r $\begin{array}{ll}\text { LHS: } \quad \varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=4 \pi \varepsilon_{0} r^{2} E \\ \text { RHS: } \boldsymbol{q}=A L L \text { charge inside radius } r\end{array} \quad E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$.
Cylindrical symmetry: Gaussian surface $=$ cylinder of radius r
LHS: $\quad \varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=\varepsilon_{0} 2 \pi r L E$
RHS: $\boldsymbol{q}=$ ALL charge inside radius r, length L
$E=\frac{\lambda}{2 \pi \varepsilon_{n} r}$
Planar Symmetry: Gaussian surface $=$ cylinder of area A
LHS: $\varepsilon_{0} \oint \vec{E} \bullet d \vec{A}=\varepsilon_{0} 2 A E$
RHS: $\boldsymbol{q}=$ ALL charge inside cylinder $=\sigma A$

$$
E=\frac{\sigma}{2 \varepsilon_{0}}
$$

Prez Day Weekend Fun

- HW \#5 \rightarrow due next Wednesday
- Now is time to resolve any questions you may have about previous HW, Quiz
- Office Hours usually after this class (9:30 10:00) in WAT214 - today (1-1:30pm)

