Energy storage in CAPACITORs

Charge capacitor by transferring bits of charge dq at a timefrom bottom to top plate. Can use a battery to do this. Battery does work which increase potential energy of capacitor.

q is magnitude of charge on plates

$$V=q/C$$
 V across plates

$$U = \int_{0}^{U} dU = \int_{0}^{Q} \frac{q}{C} dq = \frac{Q^{2}}{2C} = \frac{(CV)^{2}}{2C} = \frac{1}{2}CV^{2}$$

two ways to write

Y&F, eqn. 24.9

Where is the Energy Stored?

- Claim: energy is stored in the electric field itself.
 Think of the energy needed to charge the capacitor as being the energy needed to create the field.
- To calculate the energy density in the field, first consider the constant field generated by a parallel plate capacitor, where

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{Q^2}{(A\varepsilon_0/d)}$$
 This is the energy

The electric field is given by:

This is the energy density, u, of the electric field....

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A} \quad \Longrightarrow \quad U = \frac{1}{2} \varepsilon_0 E^2 A d$$

The energy density u in the field is given by:

$$u = \frac{U}{volume} = \frac{U}{Ad} \left(= \frac{1}{2} \varepsilon_0 E^2 \right)$$

Units: $\frac{J}{m^3}$

Energy Density

Claim: the expression for the energy density of the electrostatic field $u = \frac{1}{2} \varepsilon_0 E^2$

is general and is not restricted to the special case of the constant field in a parallel plate capacitor.

Example

- Consider E- field between surfaces of cylindrical capacitor:
- Calculate the energy in the field of the capacitor by integrating the above energy density over the volume of the space between cylinders.

$$U = \frac{1}{2} \varepsilon_0 \int E^2 dV = \frac{1}{2} \varepsilon_0 \int \int E^2 \pi r \, dr \, dl = etc.$$

Compare this value with what you expect from the general expression:

Capacitor Summary

- A Capacitor is an object with two spatially separated conducting surfaces.
- The definition of the capacitance of such an object is:

$$C \equiv \frac{Q}{V}$$

• The capacitance depends on the geometry:

Parallel Plates

$$C = \frac{A\varepsilon_0}{d}$$

Cylindrical

$$C = \frac{2 \pi \varepsilon_0 L}{\ln \left(\frac{b}{a}\right)}$$

Spherical

$$C = \frac{4\pi\varepsilon_0 ab}{b - a}$$

Example 1

- Consider two cylindrical capacitors, each of length L.
 - $-C_1$ has inner radius 1 cm and outer radius 1.1cm.
 - $-C_2$ has inner radius 1 cm and outer radius 1.2cm.

If both capacitors are given the same amount of charge, what is the relation between U_1 , the energy stored in C_1 , and U_2 , the energy stored in C_2 ?

(a)
$$U_2 < U_1$$

(b)
$$U_2 = U_1$$

(c)
$$U_2 > U_1$$

Example 1

- Consider two cylindrical capacitors, each of length L.
 - $-C_1$ has inner radius 1 cm and outer radius 1.1cm.
 - $-C_2$ has inner radius 1 cm and outer radius 1.2cm.

If both capacitors are given the same amount of charge, what is the relation between U_1 , the energy stored in C_1 , and U_2 , the energy stored in C_2 ?

(a)
$$U_2 < U_1$$

(b)
$$U_2 = U_1$$

The magnitude of the electric field from r = 1 to 1.1 cm is the same for C_1 and C_2 . But C_2 also has electric energy density in the volume 1.1 to 1.2 cm. In formulas:

$$C = \frac{2\pi \varepsilon_o L}{\ln \left(\frac{r_{outer}}{r_{inner}}\right)}$$

$$C_1 \sim \frac{1}{\ln\left(\frac{1.1}{1}\right)}$$

$$C_2 \sim \frac{1}{\ln\left(\frac{1.2}{1}\right)}$$

$$C = \frac{2\pi\varepsilon_{o}L}{\ln\left(\frac{r_{outer}}{1}\right)} \qquad C_{1} \sim \frac{1}{\ln\left(\frac{1.1}{1}\right)} \qquad C_{2} \sim \frac{1}{\ln\left(\frac{1.2}{1}\right)} \qquad \frac{U_{2}}{U_{1}} = \frac{Q^{2}/2C_{2}}{Q^{2}/2C_{1}} = \frac{C_{1}}{C_{2}} = \ln\left(\frac{1.2}{1.1}\right)$$

DIELECTRICS

Consider parallel plate capacitor with vacuum separating plates (left)

Suppose we place a material called a dielectric in between the plates (right)

The charge on the plates
remain the same, but a
dielectric has a property of
having induced charges on its surface that REDUCE
the electric field in between and the voltage difference.

Vacuum between plates σ $-\sigma$ (2)

between plates (b)

Dielectric

Y&F Figure 24.13

Since C = Q/V, the resulting capacitance will <u>INCREASE</u>.

DIELECTRICS

Suppose the charges on the plate and the dielectric are, s and s_i . The electric Fields before and after are

$$E_0 = \frac{\sigma}{\varepsilon_0}$$
; $E = \frac{\sigma - \sigma_i}{\varepsilon_0}$; $K \equiv \frac{E_0}{E} = \frac{\sigma}{\sigma - \sigma_i}$

We define the ratio of the original field over the new field as the dielectric constant, **K**.

Hence, the voltage difference changes by 1/K and the capacitance, $C_o = Q/V$, changes by $C = KQ/V = K C_o$

For same Q: $C = KC_o$ $E = E_o/K$ V = Vo/K

But $C = KC_0$ General

Dielectric between plates

DIELECTRICS Materials

Material	K	Material	K
Vacuum	1	Polyvinyl chloride	3.18
Air (1 atm)	1.00059	Plexiglas	3.40
Air (100 atm)	1.0548	Glass	5-10
Teflon	2.1	Neoprene	6.70
Polyethylene	2.25	Germanium	16
Benzene	2.28	Glycerin	42.5
Mica	3-6	Water	80.4
Mylar	3.1	Strontium titanate	310

Glass, mica, plastics are very good dielectrics

DIELECTRICS and permittivity

We introduce a convenient redefinition of ϵ_0 , called **permittivity**, as

 $\varepsilon = K \varepsilon_0$

Consider a parallel plate capacitor with no dielectric

$$C_0 = \varepsilon_0 \frac{A}{d}$$

A capacitor with a dielectric becomes simply,

$$C = KC_0 = K\varepsilon_0 \frac{A}{d} = \varepsilon \frac{A}{d}$$

The change in capacitance can be accounted for by changing permittivity.

EXAMPLE of parallel plate capacitor problem

A parallel plate capacitor is made by placing polyethylene (K = 2.3) between two sheets of aluminum foil. The area of each sheet is 400 cm^2 , and the thickness of the polyethylene is 0.3 mm. Find the capacitance.

$$C = K \epsilon_0 A/d = (2.3) (8.85 \times 10^{-12} C^2/Nm^2) (400 cm^2)(1m^2/10^4 cm^2)$$

 $0.3 \times 10^{-3} m$

 $= 2.71 \, nF$

Example 2:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_2 is filled with a dielectric.

→ Compare the voltages of the two capacitors.

a)
$$V_1 > V_2$$

a)
$$V_1 > V_2$$
 b) $V_1 = V_2$ c) $V_1 < V_2$

c)
$$V_1 < V_2$$

Example 2:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_2 is filled with a dielectric.

→ Compare the voltages of the two capacitors.

a)
$$V_1 > V_2$$

(b)
$$V_1 = V_2$$

c)
$$V_1 < V_2$$

Example 3:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_2 is filled with a dielectric.

→ Compare the charges on the plates of the capacitors.

a)
$$Q_1 > Q_2$$

$$(Q_1 = Q_2)$$

b)
$$Q_1 = Q_2$$
 c) $Q_1 < Q_2$

Example 3:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_2 is filled with a dielectric.

→ Compare the charges on the plates of the capacitors.

a)
$$Q_1 > Q_2$$

b)
$$Q_1 = Q_2$$

$$(c) Q_1 < Q_2$$

Note: Unlike constant Q case, here V and E remain the same but $C = K C_0$ still.

EXAMPLE

Two parallel plate capacitors, $C_1 = C_2 = 2 \mu F$, are connected across a 12 V battery in parallel.

a.) What energy is stored?

$$U_1 = U_2 = \frac{1}{2}CV^2 = 144\mu J$$
 $U_T = 288\mu J$

b.) A dielectric (K = 2.5) is inserted between the plates of C_2 . Energy?

$$C_2' = KC_2 = 2.5 \times 2\mu F = 5\mu F$$

$$U_2' = \frac{1}{2}C_2'V^2 = 360\mu J \quad U_T = 504\mu J$$

Note: a dielectric increases amount of energy stored in C_2 .

Y&F Problems 24.72 and 24.71

A parallel plate capacitor has two dielectrics, side by side, show the capacitance is,

$$C = \varepsilon_0 \frac{A}{d} \frac{K_1 + K_2}{2}$$

A parallel plate capacitor has two dielectrics, stacked, show the capacitance is,

$$C = \varepsilon_0 \frac{A}{d} \frac{2K_1 K_2}{K_1 + K_2}$$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

More weekend Fun

- HW #4 → get cracking (Hints on Monday)
- Office Hours immediately after this class (9:30 10:00) in WAT214 [1-1:30pm today]
- 2nd Quiz Now

