Energy storage in CAPACITORs

Charge capacitor by transferring bits of charge dq at a timefrom bottom to top plate. Can use a battery to do this. Battery does work which increase potential energy of capacitor.

q is magnitude of charge on plates

$V=q / C$	V across plates
$d U=V d q$	increase in potential energy

Where is the Energy Stored?

- Claim: energy is stored in the electric field itself. Think of the energy needed to charge the capacitor as being the energy needed to create the field.
- To calculate the energy density in the field, first consider the constant field generated by a parallel plate capacitor, where

$$
U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{Q^{2}}{\left(A \varepsilon_{0} / d\right)}
$$

- The electric field is given by:

This is the energy density, u, of the electric field....

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A} \quad \Rightarrow \quad U=\frac{1}{2} \varepsilon_{0} E^{2} A d
$$

- The energy density u in the field is given by:

$$
u=\frac{U}{\text { volume }}=\frac{U}{A d}=\frac{1}{2} \varepsilon_{0} E^{2} \quad \quad \text { Units: } \frac{\mathrm{J}}{\mathrm{~m}^{3}}
$$

Energy Density

Claim: the expression for the energy density of the electrostatic field

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}
$$

is general and is not restricted to the special case of the constant field in a parallel plate capacitor.

- Example
- Consider \boldsymbol{E} - field between surfaces of cylindrical capacitor:
- Calculate the energy in the field of the capacitor by integrating the above energy density over the volume of the space between cylinders.

$$
U=\frac{1}{2} \varepsilon_{0} \int E^{2} d V=\frac{1}{2} \varepsilon_{0} \iint E^{2} \pi r d r d l=e t c .
$$

- Compare this value with what you expect from the general expression:

$$
W=\frac{1}{2} C V^{2}
$$

Capacitor Summary

- A Capacitor is an object with two spatially separated conducting surfaces.
- The definition of the capacitance of such an object is:

$$
C \equiv \frac{Q}{V}
$$

- The capacitance depends on the geometry :

Parallel Plates

$$
C=\frac{A \varepsilon_{0}}{d}
$$

> Cylindrical
> $C=\frac{2 \pi \varepsilon{ }_{0} L}{\ln \left(\frac{b}{a}\right)}$

Spherical
$C=\frac{4 \pi \varepsilon_{0} a b}{b-a}$

Example 1

- Consider two cylindrical capacitors, each of length L.
- C_{1} has inner radius 1 cm and outer radius 1.1 cm .
- C_{2} has inner radius 1 cm and outer radius 1.2 cm .

If both capacitors are given the same amount of charge, what is the relation between U_{1}, the energy stored in C_{1}, and U_{2}, the energy stored in C_{2} ?

(a) $U_{2}<U_{1}$
(b) $U_{2}=U_{1}$
(c) $U_{2}>U_{1}$

Example 1

- Consider two cylindrical capacitors, each of length L.
- C_{1} has inner radius 1 cm and outer radius 1.1 cm .
$-C_{2}$ has inner radius 1 cm and outer radius 1.2 cm .
If both capacitors are given the same amount of charge, what is the relation between U_{1}, the energy stored in C_{1}, and U_{2}, the energy stored in C_{2} ?

$$
\begin{array}{ll}
\text { (a) } U_{2}<U_{1} & \text { (b) } U_{2}=U_{1}
\end{array}
$$

(c) $U_{2}>U_{1}$

The magnitude of the electric field from $r=1$ to 1.1 cm is the same for C_{1} and C_{2}. But C_{2} also has electric energy density in the volume 1.1 to 1.2 cm . In formulas:
$C=\frac{2 \pi \varepsilon_{0} L}{\ln \left(\frac{r_{\text {outer }}}{r_{\text {riner }}}\right)} \quad C_{1} \sim \frac{1}{\ln \left(\frac{1.1}{1}\right)} \quad C_{2} \sim \frac{1}{\ln \left(\frac{1.2}{1}\right)} \quad \frac{U_{2}}{U_{1}}=\frac{Q^{2} / 2 C_{2}}{Q^{2} / 2 C_{1}}=\frac{C_{1}}{C_{2}}=\ln \left(\frac{1.2}{1.1}\right)$

DIELECTRICS

Consider parallel plate capacitor with vacuum separating plates (left)

Suppose we place a material called a dielectric in between the plates (right)

The charge on the plates remain the same, but a dielectric has a property of
 having induced charges on its surface that REDUCE the electric field in between and the voltage difference.

Since $C=Q / V$, the resulting capacitance will INCREASE.

DIELECTRICS

Suppose the charges on the plate and the dielectric are, s and s_{i}. The electric Fields before and after are

$$
E_{0}=\frac{\sigma}{\varepsilon_{0}} ; E=\frac{\sigma-\sigma_{i}}{\varepsilon_{0}} ; K \equiv \frac{E_{0}}{E}=\frac{\sigma}{\sigma-\sigma_{i}}
$$

We define the ratio of the original field over the new field as the dielectric constant, K.

Hence, the voltage difference changes by $1 / K$ and the capacitance, $C_{0}=Q / V$, changes by $C=K Q / V=K C$ 。

For same $Q: \quad C=K C_{0} \quad E=E_{0} / K \quad V=V o / K$

$$
\text { But } C=K C_{0} \text { General }
$$

DIELECTRICS Materials

Table 24.1 Values of Dielectric Constant K at $20^{\circ} \mathrm{C}$

Material	\boldsymbol{K}	Material	\boldsymbol{K}
Vacuum	1	Polyvinyl chloride	3.18
Air $(1 \mathrm{~atm})$	1.00059	Plexiglas	3.40
Air $(100 \mathrm{~atm})$	1.0548	Glass	$5-10$
Teflon	2.1	Neoprene	6.70
Polyethylene	2.25	Germanium	16
Benzene	2.28	Glycerin	42.5
Mica	$3-6$	Water	80.4
Mylar	3.1	Strontium titanate	310

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Glass, mica, plastics are very good dielectrics

DIELECTRICS and permittivity

We introduce a convenient redefinition of ε_{0}, called permittivity, as

$$
\varepsilon=\mathrm{K} \varepsilon_{0}
$$

Consider a parallel plate capacitor with no dielectric

$$
C_{0}=\varepsilon_{0} \frac{A}{d}
$$

A capacitor with a dielectric becomes simply,

$$
C=K C_{0}=K \varepsilon_{0} \frac{A}{d}=\varepsilon \frac{A}{d}
$$

The change in capacitance can be accounted for by changing permittivity.

EXAMPLE of parallel plate capacitor problem

A parallel plate capacitor is made by placing polyethylene ($K=2.3$) between two sheets of aluminum foil. The area of each sheet is $400 \mathrm{~cm}^{2}$, and the thickness of the polyethylene is 0.3 mm . Find the capacitance.

$$
\begin{aligned}
C=K \varepsilon_{0} A / d & =\frac{(2.3)\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)\left(400 \mathrm{~cm}^{2}\right)\left(1 \mathrm{~m}^{2} / 10^{4} \mathrm{~cm}^{2}\right)}{0.3 \times 10^{-3} \mathrm{~m}} \\
& =2.71 \mathrm{nF}
\end{aligned}
$$

Example 2:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_{2} is filled with a dielectric.

\Rightarrow Compare the voltages of the two capacitors.
a) $V_{1}>V_{2}$
b) $V_{1}=V_{2}$
c) $V_{1}<V_{2}$

Example 2:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_{2} is filled with a dielectric.

\Rightarrow Compare the voltages of the two capacitors.
a) $V_{1}>V_{2}$
b) $V_{1}=V_{2}$
c) $V_{1}<V_{2}$

Example 3:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_{2} is filled with a dielectric.

\rightarrow Compare the charges on the plates of the capacitors.
a) $Q_{1}>Q_{2}$
b) $Q_{1}=Q_{2}$
c) $Q_{1}<Q_{2}$

Example 3:

Two identical parallel plate capacitors are connected to a battery. Remaining connected, C_{2} is filled with a dielectric.

\Rightarrow Compare the charges on the plates of the capacitors.
a) $Q_{1}>Q_{2}$
b) $Q_{1}=Q_{2}$

$$
\text { (c) } Q_{1}<Q_{2}
$$

Note: Unlike constant Q case, here V and E remain the same but $\mathrm{C}=\mathrm{K} \mathrm{C}_{\mathrm{o}}$ still.

EXAMPLE

Two parallel plate capacitors, $C_{1}=C_{2}=2 \mu \mathrm{~F}$, are connected across a 12 V battery in parallel.
a.) What energy is stored?

$$
U_{1}=U_{2}=\frac{1}{2} C V^{2}=144 \mu J \quad U_{T}=288 \mu J
$$

b.) A dielectric $(K=2.5)$ is inserted between the plates of C_{2}. Energy?

$$
\begin{aligned}
& C_{2}^{\prime}=K C_{2}=2.5 \times 2 \mu F=5 \mu F \\
& U_{2}^{\prime}=\frac{1}{2} C_{2}^{\prime} V^{2}=360 \mu J \quad U_{T}=504 \mu J
\end{aligned}
$$

Note: a dielectric increases amount of energy stored in C_{2}.

Y\&F Problems 24.72 and 24.71

A parallel plate capacitor has two dielectrics, side by side, show the capacitance is,

$$
C=\varepsilon_{0} \frac{A}{d} \frac{K_{1}+K_{2}}{2}
$$

A parallel plate capacitor has two dielectrics, stacked, show the capacitance is,

$$
C=\varepsilon_{0} \frac{A}{d} \frac{2 K_{1} K_{2}}{K_{1}+K_{2}}
$$

More weekend Fun

- HW \#4 \rightarrow get cracking (Hints on Monday)
- Office Hours immediately after this class (9:30 - 10:00) in WAT214 [1-1:30pm today]
- $2^{\text {nd }}$ Quiz Now

