CAPACITORS

C - Capacitance
 V= V_a-V_b - voltage difference

$$C = \frac{Q}{V}$$

- Capacitance, depends on the geometry of the two conductors (size, shape, separation) and capacitance is always a positive quantity by its definition (voltage difference and charge of + conductor)
- UNITs: Coulomb/Volts or <u>Farads</u>, after Michael Faraday

Capacitor Summary

- A Capacitor is an object with two spatially separated conducting surfaces.
- The definition of the capacitance of such an object is:

$$C \equiv \frac{Q}{V}$$

• The capacitance depends on the geometry:

Parallel Plates

$$C = \frac{A\varepsilon_0}{d}$$

Cylindrical

$$C = \frac{2 \pi \varepsilon_0 L}{\ln \left(\frac{b}{a}\right)}$$

Spherical

$$C = \frac{4\pi\varepsilon_0 ab}{b - a}$$

CAPACITORs in parallel

Want to find the equivalent capacitance C_{ea} :

ullet Voltage is same across each capacitor ullet

$$V_{ab} = \frac{Q_1}{C_1} = \frac{Q_2}{C_2}; \quad C_1 = \frac{Q_1}{V_{ab}}; \quad C_2 = \frac{Q_2}{V_{ab}} \quad \bigvee_{b}^{V_{ab}} \quad \bigvee_{b$$

 Total charge and voltage ratios for parallel capacitor,

$$\frac{Q_1 + Q_2}{V_{ab}} = C_{parallel} = C_1 + C_2$$

For more parallel capacitors:
$$C_{parallel} = \sum_{i} C_{i}$$

$$V \qquad C_{\text{eq}} \xrightarrow{+++} Q = Q_1 + Q_2$$

$$b \qquad (b)$$

Note: 2 parallel capacitors C, doubles capacitance.

Example 1:

Two identical parallel plate capacitors are shown in an end-view in A) of the figure. Each has a capacitance of *C*.

4) If the two are joined together as shown in B), forming a single capacitor, what will be the final capacitance?

a) C/2

b) *C*

c) 2*C*

Example 1:

Two identical parallel plate capacitors are shown in an end-view in A) of the figure. Each has a capacitance of *C*.

4) If the two are joined together as shown in B), forming a single capacitor, what will be the final capacitance?

a) *C*/2

b) *C*

CAPACITORs in series

Want to find the equivalent capacitance C_{ea} :

- If a voltage is applied across a and b, then a +Q appears on upper plate and -Q on lower plate.
- A -Q charge is induced on lower plate of C_1 and a +Q charge is induced on upper plate of C_2 . The total charge in circuit c is neutral.

$$V_{1} = \frac{Q}{C_{1}}; \quad V_{2} = \frac{Q}{C_{2}}$$

$$V = V_{1} + V_{2} = \frac{Q}{C_{1}} + \frac{Q}{C_{2}}$$

$$\frac{V}{Q} = \frac{1}{C_{series}} = \frac{1}{C_{1}} + \frac{1}{C_{2}}$$

(b)

(a)

Examples: Combinations of Capacitors

- How do we start??
- Recognize C_3 is in series with the parallel combination on C_1 and C_2 . i.e.,

$$\frac{1}{C} = \frac{1}{C_3} + \frac{1}{C_1 + C_2} \longrightarrow \left[C = \frac{C_3(C_1 + C_2)}{C_1 + C_2 + C_3} \right]$$

Three configurations are constructed using identical capacitors

- → Which of these configurations has the lowest overall capacitance?
 - a) Configuration A
 - b) Configuration B
 - c) Configuration C

Three configurations are constructed using identical capacitors

- → Which of these configurations has the lowest overall capacitance?
 - a) Configuration A
 - b) Configuration B
 - c) Configuration C

Example 4

• What is the equivalent capacitance, $C_{\rm eq},$ of the combination shown?

(a)
$$C_{\rm eq} = (3/2)C$$

(b)
$$C_{eq} = (2/3)C$$

(c)
$$C_{eq} = 3C$$

Example 4

• What is the equivalent capacitance, $C_{\rm eq}$, of the combination shown?

(a)
$$C_{eq} = (3/2)C$$

(b)
$$C_{eq} = (2/3)C$$

(c)
$$C_{eq} = 3C$$

$$\frac{1}{C_1} = \frac{1}{C} + \frac{1}{C} \qquad \Longrightarrow \qquad C_1 = \frac{C}{2} \qquad \Longrightarrow \qquad C_{eq} = C + \frac{C}{2} = \frac{3}{2}C$$

Energy storage in CAPACITORs

Charge capacitor by transferring bits of charge dq at a time from bottom to top plate. Can use a battery to do this. Battery does work which increase potential energy of capacitor.

q is magnitude of charge on plates

$$V=q/C$$
 V across plates

$$U = \int_{0}^{U} dU = \int_{0}^{Q} \frac{q}{C} dq = \frac{Q^{2}}{2C} = \frac{(CV)^{2}}{2C} = \frac{1}{2}CV^{2}$$

Y&F, eqn. 24.9

two ways to write

Question!

Suppose the capacitor shown here is charged to Q and then the battery is disconnected.

- Now suppose I pull the plates further apart so that the final separation is d_1 .
- How do the quantities Q, C, E, V, U change?
- remains the same.. no way for charge to leave.
- decreases.. since capacitance depends on geometry
- remains the same... depends only on charge density
- increases.. since $C \downarrow$, but Q remains same (or $d \uparrow$ but E the same)
- increases.. add energy to system by separating
- How much do these quantities change?.. exercise for student!!

Answers:

$$C_1 = \frac{d}{d_1}C$$

$$\left[C_{1} = \frac{d}{d_{1}}C\right] \quad \left[V_{1} = \frac{d_{1}}{d}V\right] \quad \left[U_{1} = \frac{d_{1}}{d}U\right]$$

$$U_1 = \frac{d_1}{d}U$$

Related Question

Suppose the battery (V) is kept attached to the capacitor.

- Again pull the plates apart from d to d_1 .
- Now what changes?
- C: decreases (capacitance depends only on geometry)
- must stay the same the battery forces it to be V
- must decrease, Q=CV charge flows off the plate
- E: must decrease ($E = \frac{V}{D}$, $E = \frac{\sigma}{E_0}$)
- *U*: must decrease $(U = \frac{1}{2}CV^2)$
- How much do these quantities change?

Answers:

$$C_1 = \frac{d}{d_1}C$$

$$C_1 = \frac{d}{d_1}C \qquad \left[E_1 = \frac{d}{d_1}E\right] \qquad \left[U_1 = \frac{d}{d_1}U\right]$$

$$U_1 = \frac{d}{d_1}U$$

Example 5:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.

→ What is the relation between the charges on the two capacitors?

a)
$$Q_1 > Q_2$$

b)
$$Q_1 = Q_2$$

b)
$$Q_1 = Q_2$$
 c) $Q_1 < Q_2$

Example 5:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.

→ What is the relation between the charges on the two capacitors?

(a)
$$Q_1 > Q_2$$

b)
$$Q_1 = Q_2$$
 c) $Q_1 < Q_2$

c)
$$Q_1 < Q_2$$

Example 6:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.

- \rightarrow How does the electric field between the plates of C_2 change as separation between the plates is increased? The electric field:
 - a) increases

- b) decreases
- c) doesn't change

Example 6:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.

 \rightarrow How does the electric field between the plates of C_2 change as separation between the plates is increased? The electric field:

a) increases

c) doesn't change

Example 7:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both caps is doubled.

→ What is the relation between the voltages on the two capacitors?

a)
$$V_1 > V_2$$

b)
$$V_1 = V_2$$

c)
$$V_1 < V_2$$

Example 7:

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_1 is then disconnected from the battery, and the separation between the plates of both caps is doubled.

→ What is the relation between the voltages on the two capacitors?

b)
$$V_1 = V_2$$

c)
$$V_1 < V_2$$

Where is the Energy Stored?

- Claim: energy is stored in the electric field itself. Think of the energy needed to charge the capacitor as being the energy needed to create the field.
- To calculate the energy density in the field, first consider the constant field generated by a parallel plate capacitor, where

$$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{Q^2}{(A\varepsilon_0/d)}$$
This is the energy density u of the

The electric field is given by:

density, u, of the electric field....

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 A} \longrightarrow U = \frac{1}{2} \varepsilon_0 E^2 A d$$

The energy density u in the field is given by:

$$u = \frac{U}{volume} = \frac{U}{Ad} = \frac{1}{2} \varepsilon_0 E^2$$
Units: $\frac{J}{m^3}$

Energy Density

Claim: the expression for the energy density of the electrostatic field $u = \frac{1}{2} \varepsilon_0 E^2$

is general and is not restricted to the special case of the constant field in a parallel plate capacitor.

- Example (and another exercise for the student!)
 - Consider E- field between surfaces of cylindrical capacitor:
 - Calculate the energy in the field of the capacitor by integrating the above energy density over the volume of the space between cylinders.

$$U = \frac{1}{2} \varepsilon_0 \int E^2 dV = \frac{1}{2} \varepsilon_0 \int \int E^2 \pi r \, dr \, dl = etc.$$

- Compare this value with what you expect from the general expression: $W = \frac{1}{2}CV^2$

For next time

- HW #3 \rightarrow turn in if haven't
- HW #4 \rightarrow available
- Office Hours immediately after this class (9:30 10:00) in WAT214 [M 1:30-2; WF 1-1:30]
- Don't fall behind 2nd Quiz Friday

