CAPACITORS

- C - Capacitance
$\mathrm{V}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$ - voltage difference

$$
C=\frac{Q}{V}
$$

- Capacitance, depends on the geometry of the
 two conductors (size, shape, separation) and capacitance is always a positive quantity by its definition (voltage difference and charge of + conductor)
- UNITs: Coulomb/Volts or Farads, after Michael Faraday

Capacitor Summary

- A Capacitor is an object with two spatially separated conducting surfaces.
- The definition of the capacitance of such an object is:

$$
C \equiv \frac{Q}{V}
$$

- The capacitance depends on the geometry :

Parallel Plates

$$
C=\frac{A \varepsilon_{0}}{d}
$$

Cylindrical

$$
C=\frac{2 \pi \varepsilon_{0} L}{\ln \left(\frac{b}{a}\right)}
$$

Spherical

$$
C=\frac{4 \pi \varepsilon_{0} a b}{b-a}
$$

CAPACITORs in parallel

Want to find the equivalent capacitance $C_{\text {eq }}$:

- Voltage is same across each capacitor π^{a}

- Total charge and voltage ratios for parallel capacitor,

$$
\begin{aligned}
& \frac{Q_{1}+Q_{2}}{V_{a b}}=C_{\text {parallel }}=C_{1}+C_{2} \\
& \begin{array}{l}
\text { For more parallel } \\
\text { capacitors: }
\end{array} \\
& C_{\text {parallel }}=\sum_{i} C_{i} \\
&
\end{aligned}
$$

(b)

Note; 2 parallel capacitors C, doubles capacitance.

Example 1:

Two identical parallel plate capacitors are shown in an endview in A) of the figure. Each has a capacitance of C.
\square
4) If the two are joined together as shown in B), forming a single capacitor, what will be the final capacitance?
a) $C / 2$
b) C
c) $2 C$

Example 1:

Two identical parallel plate capacitors are shown in an endview in A) of the figure. Each has a capacitance of C.

4) If the two are joined together as shown in B), forming a single capacitor, what will be the final capacitance?
a) $C / 2$
b) C
c) $2 C$

CAPACITORs in series

Want to find the equivalent capacitance $C_{e q}{ }^{\text {: }}{ }_{a}$

- If a voltage is applied across a and b, then $a+Q$ appears on upper plate and $-Q$ on lower plate.
- A $-Q$ charge is induced on lower plate of C_{1} and $a+Q$ charge is induced on upper plate of C_{2}. The total charge in circuit c is neutral.

$$
\begin{gathered}
V_{1}=\frac{Q}{C_{1}} ; \quad V_{2}=\frac{Q}{C_{2}} \\
V=V_{1}+V_{2}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}} \\
\frac{V}{Q}=\frac{1}{C_{\text {series }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
\end{gathered}
$$

Note; 2 series capacitors C, halves capacitance.

(b)

Examples: Combinations of Capacitors

- How do we start??
- Recognize C_{3} is in series with the parallel combination on C_{1} and C_{2}. i.e.,

$$
\frac{1}{C}=\frac{1}{C_{3}}+\frac{1}{C_{1}+C_{2}} \Rightarrow C=\frac{C_{3}\left(C_{1}+C_{2}\right)}{C_{1}+C_{2}+C_{3}}
$$

Configuration A

Configuration B

Configuration C

Three configurations are constructed using identical capacitors
a) Configuration A
b) Configuration B
c) Configuration C

Configuration A

Configuration B

Configuration C

Three configurations are constructed using identical capacitors

a) Configuration A
b) Configuration B
c) Configuration C

Example 4

- What is the equivalent capacitance, $C_{\text {eq }}$, of the combination shown?

(a) $C_{\text {eq }}=(3 / 2) C$
(b) $C_{\text {eq }}=(2 / 3) C$
(c) $C_{\text {eq }}=3 C$

Example 4

- What is the equivalent capacitance, $C_{\text {eq }}$, of the combination shown?

(a) $C_{\text {eq }}=(3 / 2) C$
(b) $C_{\text {eq }}=(2 / 3) C$
(c) $C_{\text {eq }}=3 C$

$$
\frac{1}{C_{1}}=\frac{1}{C}+\frac{1}{C} \Rightarrow C_{1}=\frac{C}{2} \Rightarrow C_{e q}=C+\frac{C}{2}=\frac{3}{2} C
$$

Energy storage in CAPACITORs

Charge capacitor by transferring bits of charge dq at a time from bottom to top plate. Can use a battery to do this. Battery does work which increase potential energy of capacitor.

q is magnitude of charge on plates

$V=q / C$	V across plates
$d U=V d q$	increase in potential energy

Question!

- Suppose the capacitor shown here is charged to Q and then the battery is disconnected.

- Now suppose I pull the plates further apart so that the final separation is d_{1}.
- How do the quantities Q, C, E, V, U change?
- Q: remains the same.. no way for charge to leave.
- C: decreases.. since capacitance depends on geometry
- E: remains the same... depends only on charge density
- V : increases.. since $C \downarrow$, but Q remains same (or $d \uparrow$ but E the same)
- U : increases.. add energy to system by separating
- How much do these quantities change?.. exercise for student!!

Answers:

$$
C_{1}=\frac{d}{d_{1}} C
$$

$$
V_{1}=\frac{d_{1}}{d} V
$$

$$
U_{1}=\frac{d_{1}}{d} U
$$

Related Question

- Suppose the battery (V) is kept attached to the capacitor.
- Again pull the plates apart from d
 to d_{1}.
- Now what changes?
- C: decreases (capacitance depends only on geometry)
- V : must stay the same - the battery forces it to be V
- Q: must decrease, $Q=C V$ charge flows off the plate
- E : must decrease ($E=\frac{V}{D}, E=\frac{\sigma}{E_{0}}$)
- U: must decrease ($U=\frac{1}{2} C V^{2}$)
- How much do these quantities change?

Answers:

$$
C_{1}=\frac{d}{d_{1}} C
$$

$$
E_{1}=\frac{d}{d_{1}} E
$$

$$
U_{1}=\frac{d}{d_{1}} U
$$

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.

What is the relation between the charges on the two capacitors?

a) $Q_{1}>Q_{2}$
b) $Q_{1}=Q_{2}$
c) $Q_{1}<Q_{2}$

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.
a) $Q_{1}>Q_{2}$
b) $Q_{1}=Q_{2}$
c) $Q_{1}<Q_{2}$

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.
\rightarrow How does the electric field between the plates of C_{2} change as separation between the plates is increased ? The electric field:
a) increases
b) decreases
c) doesn't change

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both capacitors is doubled.
\rightarrow How does the electric field between the plates of C_{2} change as separation between the plates is increased ? The electric field:
a) increases
b) decreases
c) doesn't change

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both caps is doubled.
\rightarrow What is the relation between the voltages on the two capacitors?
a) $V_{1}>V_{2}$
b) $V_{1}=V_{2}$
c) $V_{1}<V_{2}$

Two identical parallel plate capacitors are connected to a battery, as shown in the figure. C_{1} is then disconnected from the battery, and the separation between the plates of both caps is doubled.
a) $V_{1}>V_{2}$
b) $V_{1}=V_{2}$
c) $V_{1}<V_{2}$

Where is the Energy Stored?

- Claim: energy is stored in the electric field itself. Think of the energy needed to charge the capacitor as being the energy needed to create the field.
- To calculate the energy density in the field, first consider the constant field generated by a parallel plate capacitor, where

$$
U=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{Q^{2}}{\left(A \varepsilon_{0} / d\right)}
$$

- The electric field is given by:

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A} \quad \Rightarrow \quad U=\frac{1}{2} \varepsilon_{0} E^{2} A d
$$

- The energy density u in the field is given by:

$$
u=\frac{U}{\text { volume }}=\frac{U}{A d}=\frac{1}{2} \varepsilon_{0} E^{2} \quad \text { Units: } \frac{\mathrm{J}}{\mathrm{~m}^{3}}
$$

Energy Density

Claim: the expression for the energy density of the electrostatic field

$$
u=\frac{1}{2} \varepsilon_{0} E^{2}
$$

is general and is not restricted to the special case of the constant field in a parallel plate capacitor.

- Example (and another exercise for the student!)
- Consider \boldsymbol{E} - field between surfaces of cylindrical capacitor:
- Calculate the energy in the field of the capacitor by
integrating the above energy density over the volume of the space between cylinders.

$$
U=\frac{1}{2} \varepsilon_{0} \int E^{2} d V=\frac{1}{2} \varepsilon_{0} \iint E^{2} \pi r d r d l=e t c
$$

- Compare this value with what you expect from the
general expression:

$$
W=\frac{1}{2} C V^{2}
$$

For next time

- HW \#3 \rightarrow turn in if haven't
- HW \#4 \rightarrow available
- Office Hours immediately after this class (9:30 - 10:00) in WAT214 [M 1:30-2; WF 1-1:30]
- Don't fall behind $-2^{\text {nd }}$ Quiz Friday

