Course Intro

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

- •First day of instruction: January 11, 2010 (today) in Watanabe Hall room 112
- ·No labs first week of class (begin week of Jan. 18 22)
- •In order to complete the online homework, <u>you must register for a Mastering Physics account</u>
- Please refresh link regularly to get updated assignments
- ·Homework I (VARNERPHYS272) in <u>Mastering Physics</u> due Monday, Jan. 18, 2009

Physics 272

Motivation:

Physics of E&M allows wide range of technologies:

Radios and TV

Computers

Cell phones

iPODS

Hard drives

Washing machines

Microwave ovens

Light bulbs

Laser copiers

MRIS

etc.

Even a Prius

Important to understand.

Electric Charge

Source of electric and magnetic phenomena.

Will study E&M much of the semester.

- A.) Generating: rubbing transfers charge.
 - glass with silk
 - lucite with fur

Two types of charge (+ and -).

Ben Franklin (1706 - 1790): charge on glass rod is +.

Like charges repel.
Unlike charges attract.

What if both +?

Electric Charge

B. Charge is quantized. Not continuous as Franklin thought. charge of electron = -e charge of proton = +e e is fundamental unit of charge Can write $Q = \pm Ne$ (Q is any charge in nature; quarks not found isolated) $e = 1.6 \times 10^{-19} C$ (SI unit - Coulomb) Coulomb defined in terms of Ampere (current).

C. Charge is conserved. Glass charged by transfer of charge; no charge is created.

 $\gamma \rightarrow e^+ e^-$ pair production $\gamma \rightarrow e^+$ single positron

production not allowed

pair production

Conductors and Insulators

Insulators - charge (electrons) not free to move. Examples: glass, porcelain.

Conductors - electrons free to move. Example: Copper - 1 free electron per atom.

There are no perfect insulators or conductors!

Coulombs Law

Charles Coulomb (1736 - 1806)
Applies to point charges.

F q₁

magnitude

$$F = \frac{k |q_1 q_2|}{r^2} = \frac{1}{4\pi \varepsilon_0} \frac{|q_1 q_2|}{r^2}$$

$$k = 8.99 \times 10^9 \text{ N m}^2/C^2$$

 $\approx 9 \times 10^9 \text{ N m}^2/C^2$

$$\varepsilon_0 = 8.85 \times 10^{-12} C^2/Nm^2$$

direction:

along line between two charges attractive if unlike charges repulsive if like charges

F is a vector! F is a vector!

Looks like:

$$F_G = \frac{Gm_1m_2}{r^2}$$

Difference?

Note forces are equal and opposite (Newton's Third Law)

Example: Coulomb Force

 Two paperclips are separated by 10 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

 $k = 9 \times 10^9 \text{ N m}^2 / \text{ C}^2$

electron charge = 1.6 x 10⁻¹⁹ Coulombs

 $N_A = 6.02 \times 10^{23}$

What will the direction of the force be?

B) Repulsive

Example: Coulomb Force

Two paperclips are separated by 10 meters. Then you
remove 1 electron from each atom on the first paperclip and
place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

k= 9 x 10⁹ N m² / C²
electron charge = 1.6 x 10⁻¹⁹ Coulombs
$$N_A = 6.02 \times 10^{23}$$

- A) Paperclip $(1g \times g)$
- B) Text book (1kg x g)
- C) Truck (10^4 kg x g)
- D) Aircraft carrier (108 kg x g)
- E) Mt. Everest $(10^{14} \text{ kg} \times \text{g})$

1) Two charges $q=+1~\mu\mathrm{C}$ and $Q=+10~\mu\mathrm{C}$ are placed near each other as shown in the figure. Which of the following diagrams depicts the forces acting on the charges:

"Since Q is much larger in magnitude, it will have a much larger force on q than q will have on Q."

"The force on each must be equal and opposite to satisfy Newton's third law."

Coulombs Law

What if more than one charge?

Use superposition.

Example 1: Three point charges on x-axis. Force on q_0 ?

Coulombs Law

Example 2: Force on q_3 ?

Up in the Sky... it's Coulomb Man!

100kg -- how much to levitate 100 meters skyward?

Reminder

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

- ·No labs first week of class (begin week of Jan. 18 22)
- •In order to complete the online homework, you must register for a Mastering Physics account
- ·Homework I (VARNERPHYS272) in <u>Mastering Physics</u> due Monday, Jan. 18, 2009 (will post new assignment)