Course Intro

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html

-First day of instruction: January 11, 2010 (today) in Watanabe Hall room 112
-No labs first week of class (begin week of Jan. 18-22)
-In order to complete the online homework, you must register for a Mastering Physics account
-Please refresh link regularly to get updated assignments
-Homework I (VARNERPHYS272) in Mastering Physics due Monday, Jan. 18, 2009

Physics 272

Motivation:

Physics of E\&M allows wide range of technologies:

Radios and TV
Computers
Cell phones
iPODS
Hard drives
Washing machines
Microwave ovens Light bulbs
Laser copiers MRIs etc.

Important to understand.

Electric Charge

Source of electric and magnetic phenomena.
Will study E\&M much of the semester.
A.) Generating: rubbing transfers charge.

- glass with silk
- lucite with fur

Two types of charge (+ and -).
Ben Franklin (1706-1790): charge on glass rod is +.

> Like charges repel.
> Unlike charges attract.

What if both +?

Electric Charge

B. Charge is quantized. Not continuous as Franklin thought.
charge of electron $=-e$
charge of proton $=+e$
e is fundamental unit of charge
Can write $Q= \pm \mathrm{Ne}$
(Q is any charge in nature; quarks not found isolated) $e=1.6 \times 10^{-19} \mathrm{C} \quad$ (SI unit - Coulomb) Coulomb defined in terms of Ampere (current).
C. Charge is conserved. Glass charged by transfer of charge; no charge is created.

$$
\begin{array}{ll}
\gamma \rightarrow e^{+} e^{-} & \text {pair production } \\
\gamma \rightarrow e^{+} & \text {single positron } \\
& \text { production not allowed }
\end{array}
$$

pair production

Conductors and Insulators

Insulators - charge (electrons) not free to move. Examples: glass, porcelain.

Conductors - electrons free to move.
Example: Copper-1 free electron per atom.

There are no perfect insulators or conductors!

Coulombs Law

Charles Coulomb (1736-1806) Applies to point charges.

$$
\begin{array}{r}
\left.F=\frac{k\left|q_{1} q_{2}\right|}{r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \right\rvert\, \\
k=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}
\end{array}
$$

$$
\approx 9 \times 10^{9} \mathrm{Nm}^{2} / C^{2}
$$

$$
\varepsilon_{0}=8.85 \times 10^{-12} C^{2} /{N m^{2}}^{2}
$$

direction: along line between two charges attractive if unlike charges repulsive if like charges
F is a vector! F is a vector!
Note forces are equal and opposite (Newton's Third Law)

Example: Coulomb Force

- Two paperclips are separated by 10 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$
\overrightarrow{\mathrm{F}}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathrm{r}}_{12}
$$

What will the direction of the force be?

Example: Coulomb Force

- Two paperclips are separated by 10 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$
\overrightarrow{\mathrm{F}}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}^{2}} \hat{\mathrm{r}}_{12}
$$

A) Paperclip ($1 g \times g$)
B) Text book $(1 \mathrm{~kg} \times \mathrm{g})$
C) Truck ($10^{4} \mathrm{~kg} \times \mathrm{g}$)
D) Aircraft carrier ($10^{8} \mathrm{~kg} \times \mathrm{g}$)
E) Mt. Everest ($10^{14} \mathrm{~kg} \times \mathrm{g}$)

$$
\begin{gathered}
F=\frac{9\left(10^{9}\right)}{100}\left[1.6\left(10^{-19}\right) 10^{20^{2}}\right]^{2} \\
\frac{10^{10} \times 10^{6}}{10^{2}}=10^{14}
\end{gathered}
$$

"Since Q is much larger in magnitude, it will have a much larger force on q than q will have on Q. "
"The force on each must be equal and opposite to satisfy Newton's third law ."

Coulombs Law

What if more than one charge?
Use superposition.
Example 1: Three point charges on x-axis. Force on q_{0} ?

Coulombs Law

Example 2: Force on q_{3} ?
$\begin{array}{ll}q_{2}=3.0 \mu C \\ y_{2}=6 \mathrm{~m}\end{array}, \quad y$

Up in the Sky... it's Coulomb Man!

100 kg -- how much to levitate 100 meters skyward?

Reminder

http://www.phys.hawaii.edu/~varner/PHYS272-Spr10/physics272.html
-No labs first week of class (begin week of Jan. 18-22)

- In order to complete the online homework, you must register for a Mastering Physics account
- Homework I (VARNERPHYS272) in Mastering Physics due Monday, Jan. 18, 2009 (will post new assignment)

