Fields at surface of conductors

Conducting sphere: charge distributes uniformly. E outside just like point charge Q.

### More general shape:

- 1. E is  $\perp$  to surface since there can be no component tangent.
- 2. Flux on cyl. surface is zero.
- 3. Flux on inside is zero.
- 4. Therefore

$$\oint \vec{E} \cdot d\vec{A} = \Phi_E = EA \cos \theta = EA$$

$$E = \frac{q}{\varepsilon_0 A} = \frac{\sigma}{\varepsilon_0}$$



 $\vec{E}$  at surface of conductor is normal and  $E = \sigma/\epsilon_0$ .

### **Exercise 2a**

#### Consider the following two topologies:

A solid non-conducting sphere carries a total charge  $Q = -3 \mu C$ distributed evenly throughout. It is surrounded by an uncharged conducting spherical shell.



- Same as (A) but conducting shell removed B)
  - Compare the electric field at point X in cases A and B:

(a) 
$$E_{A} < E_{B}$$
 (b)  $E_{A} = E_{B}$  (c)  $E_{A} > E_{B}$ 

(b) 
$$E_{\mathsf{A}} = E_{\mathsf{B}}$$

$$(c) E_A > E_B$$



# **Exercise 2a**

**Consider the following two topologies:** 

A solid non-conducting sphere carries a total charge  $Q = -3 \mu C$ distributed evenly throughout. It is surrounded by an uncharged conducting spherical shell.



- Same as (A) but conducting shell removed B)
  - Compare the electric field at point X in cases A and B:

(a) 
$$E_{\mathsf{A}} < E_{\mathsf{B}}$$

(b) 
$$E_{A} = E_{B}$$
 (c)  $E_{A} > E_{B}$ 

(c) 
$$E_{\mathsf{A}} > E_{\mathsf{B}}$$

- Select a sphere passing through the point X as the Gaussian surface.
- •How much charge does it enclose?
  - •Answer: -|Q|, whether or not the uncharged shell is present.

(The field at point X is determined only by the objects with NET CHARGE.)

### **Exercise 2b**

#### **Consider again the topology:**

A solid non-conducting sphere carries a total charge  $Q = -3 \mu C$ distributed evenly throughout. It is surrounded by an uncharged conducting spherical shell.



• What is the surface charge density  $\sigma_1$  on the inner surface of the conducting shell in case A?

(a) 
$$\sigma_1 < 0$$

**(b)** 
$$\sigma_1 = 0$$

**(b)** 
$$\sigma_1 = 0$$
 **(c)**  $\sigma_1 > 0$ 



## **Exercise 2b**

#### **Consider the following topology:**

A solid non-conducting sphere carries a total charge  $Q = -3 \mu C$  and is surrounded by an uncharged conducting spherical shell.



•What is the surface charge density  $\sigma_1$  on the inner surface of the conducting shell in case A?

(a) 
$$\sigma_1 < 0$$

**(b)** 
$$\sigma_1 = 0$$

(c) 
$$\sigma_1 > 0$$

- Inside the conductor, we know the field E = 0
- Select a Gaussian surface inside the conductor
  - Since E = 0 on this surface, the total enclosed charge must be 0
  - Therefore,  $\sigma_1$  must be positive, to cancel the charge -|Q|
- By the way, to calculate the actual value:  $\sigma_1 = -Q I (4 \pi r_1^2)$