Boundary conditions example

Is the E field continuous across the plane?

No!

Is the electric potential V continuous across the plane?

Yes! (energy is not created or destroyed)

Conclusion is general

Hints for 23.49

Assume the potential at infinity is zero

A metal sphere with radius r is supported on an insulating stand in the center of a hollow metal spherical shell of radius b.

There is a charge –q on the inner sphere and a charge +q on the outer shell.

One approach: find the E fields and then the potentials. Match the boundary conditions

Make a Gaussian surface inside the sphere. What is E inside?

What is the electric potential for r<r_a?

 $V=V_0$ we will determine this constant later.

Now make a spherical Gaussian surface at radius r

What is the charge enclosed?

$$E = \frac{-q}{4\pi\varepsilon_0 r^2}$$

$$V(r) = \frac{-q}{4\pi\varepsilon_0 r} + V_1$$

Now make a spherical Gaussian surface at radius r

outside.

What is the charge enclosed?

What is the E field?

$$V(r) = V_2 = 0$$

What is the potential?

Now put all the electric potentials together.

$$\begin{split} r &= r_b; V = 0 = \frac{-q}{4\pi\varepsilon_0 r_b} + V_1 \qquad V_1 = \frac{q}{4\pi\varepsilon_0 r_b} \\ r &= r_a; V = V_0 = \frac{-q}{4\pi\varepsilon_0 r_a} + V_1 \qquad V_0 = \frac{-q}{4\pi\varepsilon_0 r_a} + \frac{q}{4\pi\varepsilon_0 r_b} \end{split}$$

Calculate V_{ab}=V_b-V_a

$$|V(r)| = \frac{-q}{4\pi\varepsilon_0 r} + V_1 \ |V_{ab}| = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right) = V_0$$

$$|V(r)| = V_2 = 0$$

Hints for 23.87

Nuclear Fission

Half the volume and half the charge of the original nucleus

$$V/2 = \frac{4\pi}{3} R_{daughter}^3$$

What is the kinetic energy of each daughter nucleus when they are far apart?

Hints for 23.87

This is "electric potential energy"