Launch Vehicle Design: Trajectories and Aerodynamics

Space System Design, MAE 342, Princeton University Robert Stengel

- Launch trajectories and effects
- Forces, moments, and stability
- · Point mass, rigid body, and body bending

Copyright 2008 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Final Position and Velocity Determine Orbital Elements

Position and Velocity

Newton's Laws of Motion: Dynamics of a Particle

First Law

- If no force acts on a particle, it remains at rest or continues to move in a straight line at constant velocity, as observed in an inertial reference frame -- Momentum is conserved
- Second Law
 - A particle of fixed mass acted upon by a force changes velocity with an acceleration proportional to and in the direction of the force, as observed in an inertial reference frame; the ratio of force to acceleration is the mass of the particle: F = m a
- Third Law
 - For every action, there is an equal and opposite reaction

$$\frac{d}{dt}(m\mathbf{v}) = 0 \quad ; \quad m\mathbf{v}\big|_{t_1} = m\mathbf{v}\big|_{t_2}$$

$$\frac{d}{dt}(m\mathbf{v}) = m\frac{d\mathbf{v}}{dt} = \mathbf{F} \quad ; \quad \mathbf{F} = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$
$$\therefore \quad \frac{d\mathbf{v}}{dt} = \frac{1}{m}\mathbf{F} = \begin{bmatrix} 1/m & 0 & 0 \\ 0 & 1/m & 0 \\ 0 & 0 & 1/m \end{bmatrix} \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$

Equations of Motion for a Point Mass

7 1	[1/ <i>m</i>	0	0]	$\left[f_{x}\right]$
$\frac{d\mathbf{v}}{dt} = \dot{\mathbf{v}} = \frac{1}{m}\mathbf{F} =$	0	1/m	0	f_y
ai m	0	0	1/m	f_z

Equations of Motion for a Point Mass

Written as a single equation

Combined Equations of Motion for a Point Mass

Newtonian Frame of Reference

- Newtonian (Inertial) Frame of Reference
 - Unaccelerated Cartesian frame whose origin is referenced to an inertial (non-moving) frame
 - Origin can translate at constant linear velocity
 - Frame cannot be rotating with respect to inertial origin
- ... but the Earth is rotating
- Different approximations to "inertial" suit different problems

Force due to Gravity

 $m\mathbf{g}_f = m \mid 0 \mid$

- Flat-earth approximation •
 - g is gravitational acceleration
 - mg is gravitational force
 - Independent of position
- Round, rotating earth •
 - Inverse-square gravitation
 - "Centrifugal acceleration"
 - Non-linear function of position
 - $-\mu = 3.986 \text{ x } 10^{14} \text{ m/s}^2$
 - $\Omega = 7.29 \times 10^{-5}$ rad/s

 $\mathbf{g}_r = \mathbf{g}_{gravity} + \mathbf{g}_{rotation}$ [rotating frame] $= \frac{-\mu}{r^{3}} \begin{vmatrix} x \\ y \\ z \end{vmatrix} - \Omega^{2} \begin{vmatrix} x \\ y \\ 0 \end{vmatrix} ; \quad r = \left[x^{2} + y^{2} + z^{2} \right]^{1/2}$

[non - rotating frame]

; $g_o = 9.807 \ m/s^2$

Equations of Motion with Round-Earth Gravity Model (Inertial, Non-Rotating Frame)

0

0

0

0

0

/m

x		0	0	0	1	0	0	x		0	0	
ÿ		0	0	0	0	1	0	y		0	0	
ż		0	0	0	0	0	1	<i>z</i> .		0	0	
\dot{v}_x	=	$-\mu/r^3$	0	0	0	0	0	v_x	+	1/ <i>m</i>	0	
\dot{v}_y		0	$-\mu/r^3$	0	0	0	0	$ v_y $		0	1/m	
\dot{v}_z	F	0	0	$-\mu/r^3$	0	0	0	<i>v</i> ₋	,	0	0	1

Position of the vehicle (in spherical coordinates)

R: Earth's radius h : Altitude (height) L : Latitude λ : Longitude

Effect of Launch Site on Launch Velocity

- Launch site and azimuth •
 - Earth's rotation adds up to 465 m/s to final inertial velocity
 - Function of launch latitude and azimuth angles

$$\Delta V_{launch} \approx \Omega R \cos L \cos \beta$$

$$\beta: Launch azimuth angle (from East)$$

Ω Rcos L

Properties of the Lower Atmosphere

- Air density and pressure decay exponentially with altitude
- Air temperature and speed of sound are linear functions of altitude •
- Jet stream magnitude typically peaks at 10-15-km altitude

Lower Atmosphere Rotates With The Earth

- · Zero wind at Earth's surface = Inertially rotating air mass
- Wind measured with respect to Earth's rotating surface

Aerodynamic Forces

- V = air-relative velocity = velocity w.r.t. air mass
- · Drag measured opposite to the air-relative velocity vector
- · Lift and side force are perpendicular to the velocity vector

Aerodynamic Forces

 $\rho = air \, density, function \, of \, height$ $= \rho_{sea \, level} e^{-\beta z}$ $\rho_{sea \, level} = 1.225 \, kg/m^3; \quad \beta = 1/9,042 \, m$ $V = \left[v_x^2 + v_y^2 + v_z^2 \right]^{1/2} = \left[\mathbf{v}^T \mathbf{v} \right]^{1/2}$ $Dynamic \, pressure = \overline{q} = \frac{1}{2} \rho V^2$ $S = reference \, area, \, m^2$ $\begin{bmatrix} C_D \\ C_Y \\ C_L \end{bmatrix} = non - dimensional \, aerodynamic \, coefficients$

Aerodynamic Drag

- Drag components sum to produce total drag
 - Skin friction
 - Base pressure differential
 - Forebody pressure differential (M > 1)

Drag Coefficients of Cones and Cone Frustums

Aerodynamic Lift Force

- Angle between x axis and airstream = angle of attack, α
- · Lift components integrate over length to produce net lift

Increase in cross-sectional areaTail fins

• For symmetric vehicle, lift = 0 if $\alpha = 0$

2-D Equations of Motion for a Point Mass

 Restrict motions to a vertical plane (i.e., motions in y direction = 0)

$$\begin{bmatrix} \dot{x} \\ \dot{z} \\ \dot{v}_x \\ \dot{v}_z \\ \dot{v}_z \end{bmatrix} = \begin{bmatrix} v_x \\ v_z \\ f_x/m \\ f_z/m \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ z \\ v_x \\ v_z \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1/m & 0 \\ 0 & 1/m \end{bmatrix} \begin{bmatrix} f_x \\ f_z \end{bmatrix}$$

2-D Equations of Motion for a Point Mass

Transform velocity from Cartesian to polar coordinates

Flat-Earth Model

- Ignore round, rotating Earth effects (!)
- i.e., assume that flat-Earth-relative frame is inertial

Adequate model for investigating early phase
 of launch

Simplified Launch Trajectory Equations of Motion

- Gravity-turn, flat earth, vertical plane
 - Thrust aligned with velocity vector ($\alpha = 0$)
 - Lift = 0
 - Round, rotating earth effects neglected

Gravity-Turn Flight Path

- For vertical launch,
 - trajectory is vertical unless
 - vehicle is pitched over via thrust-vector control
- Following pitch-over,
 - if thrust is aligned with the velocity vector,
 - the result is called a gravity turn
- Gravity-turn flight path is a function of 3 variables
 - Initial pitch-over angle (from vertical launch)
 - Velocity at pitch-over
 - Acceleration profile, T(t)/m(t)

- Aerodynamic effects on launch vehicle are most important below ~50-km altitude
- Maintain angle of attack and sideslip angle near zero to minimize side force and lift
- Typical velocity loss due to drag for vertical launch
 - Constant thrust-to-weight ratio
 - $C_D S/m = 0.0002 m^2/kg$
 - Final altitude above 80 km

Typical Velocity Loss due to Drag During Launch

Thrust-to-Velocity Loss,Weight Ratiom/s233634744581

Effects of Gravity and Drag on the Velocity Vector

- Significant reduction in velocity magnitude
- Strong curvature of the flight path

Typical Ariane 4 Launch Profile

(Spacecraft Systems Engineering, 2003)

Mass-Ratio Effect on Final Load Factor

Thrust-to-weight ratio = load factor

• If thrust is constant

	Final Load	
	Factor	
Initial Load	Mass	Mass
Factor	Ratio = 2	Ratio = 5
1.3	2.6	6.5
2	4	10
3	6	15

Jet Stream Profiles

- Launch vehicle must able to fly through strong wind profiles
- Design profiles assume 95th-99th-percentile worst winds and wind shear

Aerodynamic Normal Force

• For small angle of attack, normal force is approximately the same as lift

- Tail fins

Thrust-vector feedback control normally required to provide static and dynamic stability

Angular Attitude Perturbations

- Pitch-angle perturbation, $\Delta \theta,$ is about the same as angle-of-attack perturbation, $\Delta \alpha$

Typical Thrust-Vector Angle Requirements

• Example: Concept study for solid-fueled Saturn-class vehicles (NASA TN D-4662, 1968)

Parameter	Variation	Apollo	SSOPM		
		Deflection angle, deg			
1. Steady stage winds	99 percent	1.35	2.30	1.17	
2. Wind gusts	3σ	. 15	. 26	. 13	
3. Thrust misalinement	3σ	.25	. 25	. 25	
4. Thrust and weights	30	. 15	. 15	. 15	
5. Pitch program	maximum	. 50	. 50	. 50	
a Total		1.68	2,69	1,49	

Pitching Moment Distribution Causes Large Bending Effects

- Aerodynamic and thrust-vectoring effects bend the vehicle
- More on this in a later lecture

Launch Phases and Loading Issues-1

Liftoff

- Reverberation from the ground
- Random vibrations
- Thrust transients
- Winds and Transonic Aerodynamics
 - High-altitude jet stream
 - Buffeting
- Staging
 - High sustained
 - acceleration
 - Thrust transients

Launch Phases and Loading Issues-2

- Heat shield separation
 - Mechanical and pyrotechnic transients
- Spin stabilization
 - Tangential and centripetal acceleration
- Steady-state rotation
- Separation
 - Pyrotechnic transients

Next Time: Launch Vehicle Design: Configurations and Structures