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Newton’s Laws of Motion:
Dynamics of a Particle

First Law

— If no force acts on a particle, it
remains at rest or continues to move i(mv) -0
in a straight line at constant velocity, dt ’
as observed in an inertial reference
frame -- Momentum is conserved

Second Law
— A particle of fixed mass acted upon d e

by a force changes velocity with an =
acceleration proportional to and in dt
the direction of the force, as /.
observed in an inertial reference
frame; the ratio of force to
acceleration is the mass of the e A
particle: F = ma dt m

Third Law

— For every action, there is an equal
and opposite reaction




Equations of Motion for a

Point Mass
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Combined Equations of
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Equations of Motion for a
Point Mass

Written as a single equation
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Newtonian Frame of Reference

Newtonian (Inertial) Frame of Reference

— Unaccelerated Cartesian frame whose origin is referenced to an
inertial (non-moving) frame

— Origin can translate at constant linear velocity
— Frame cannot be rotating with respect to inertial origin
... but the Earth is rotating
— Different approximations to “inertial” suit different problems
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Force due to Gravity

Flat-earth approximation 0
— g is gravitational acceleration mg, =m|0| ; g, =9.807 m/s*
— mg is gravitational force g
— Independent of position ’
_ 8]
Round, rotating earth g, =8, |=84ui, [non-rotating frame]
— Inverse-square gravitation g

“Centrifugal acceleration”
Non-linear function of position
— u =3.986 x 10'* m/s? =Hyl-e2y] ,=[x2+y2+12]
Q=7.29 x 10° rad/s "1 0

g = ggmviry + & otation [rOtating frame]
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Effect of Launch Site on
Launch Velocity
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+ Launch site and azimuth

— Earth’s rotation adds up to 465 m/s to final inertial
velocity

— Function of launch latitude and azimuth angles
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Equations of Motion with
Round-Earth Gravity Model
(Inertial, Non-Rotating Frame)
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+ Position of the vehicle (in spherical coordinates)

- = L A R: Earth's radius
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Properties of the Lower Atmosphere
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Air density and pressure decay exponentially with altitude
Air temperature and speed of sound are linear functions of altitude
Jet stream magnitude typically peaks at 10-15-km altitude



Lower Atmosphere
Rotates With The Earth

Zero wind at Earth’s surface = Inertially rotating air mass
Wind measured with respect to Earth’s rotating surface
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Aerodynamic Forces

p = air density, function of height

= psea levele_ﬁz
Pieatevet = 1.225 kg/m39 ﬁ = 1/9,042m
V= [vxz + vyz + vzz:l”2 _ [VTV]I/z

Dynamic pressure =q = % %

2
S = reference area, m

a

D
= non — dimensional aerodynamic coefficients
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Aerodynamic Forces

\ )

Thrust

Side Force

Drag | [C,] . [ Axial Force | [C,]
Side Force|=|C, Epsz =| Side Force |=|C, |Sq
Lift | |C,] | Normal Force| |C) |

V = air-relative velocity = velocity w.r.t. air mass
Drag measured opposite to the air-relative velocity vector
Lift and side force are perpendicular to the velocity vector

Aerodynamic Drag

Drag =C, %szS

Oncoming
Airstream
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+ Drag components sum to produce total drag
— Skin friction
— Base pressure differential
— Forebody pressure differential (M > 1)



Drag Coefficients of Cones and
Cone Frustums
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2-D Equations of Motion
for a Point Mass

+ Restrict motions to a vertical plane (i.e., motions in
y direction = 0)
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Aerodynamic Lift Force

1
Lift=C, 1 pV?3S = gl pV?:S
2 da
Oncoming
Airstream
”

+ Angle between x axis and airstream = angle of attack, «
Lift components integrate over length to produce net lift
— Increase in cross-sectional area
— Tail fins
For symmetric vehicle, lift=0if =0

2-D Equations of Motion
for a Point Mass

] [Veosy] [v] [ VF+E Velocity
¢l |-Vsiny[ |y| —sin‘l(é) " | Flight path angle

+ Transform velocity from Cartesian to polar coordinates

|



Flat-Earth Model Simplified Launch Trajectory
Equations of Motion

L] i ' - -
Ignore round, rotating Earth effects () - Gravity-turn, flat earth, vertical plane
* li.e., assume that flat-Earth-relative frame is inertial — Thrust aligned with velocity vector ( = 0)
g oo oo o _Il;:ﬂ:do tati th effect lected
v oozl o oz — Round, rotating earth effects neglecte
vl |f/m] [0 0 0 ofv,| [1/m o |f :
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[z'] - [—Vsiny ’ [y] - —sin’l(é) " | Flight path angle| h(r) =-z2(t) = V(t)siny(z) B ve. ociy
. #(1) = %(1) = V()cos y(1) y = flight path angle
+ Adequate model for investigating early phase h = height (altitude)
of launch r=range

Typical Velocity Loss due

Side Force

Gravity-Turn Flight Path A

* For vertical launch, to Drag Dlll'lllg LaunCh
— trajectory is vertical unless ==
- - - - j‘ >
- ;/:rr:jl:tavlescﬂtrc;\:gtgller via =? Aerodynamic effects on Thrust-to- Velocity Loss,
. . launch vehicle are most Weight Ratio m/s
* Following pitch-over, important below ~50-km 2 336
— if thrust is aligned with the altitude 3 474
velocity ve.ector, . 5 + Maintain angle of attack and 4 581
— the result is called a gravity % sideslip angle near zero to
turn . . i/ minimize side force and lift 10X 1
: Graw_ty-turn flight pathisa , - Typical velocity loss due to ,
function of 3 variables L drag for vertical launch ,'3,‘;’;2’:,'; .
— Initial pitch-over angle (from — Constant thrust-to-weight N/m?
vertical launch) ratio
— Velocity at pitch-over - C,S/m=0.0002 m%kg % 50 100 150

— Acceleration profile, 7(#)/m(1) — Final altitude above 80 km TR



Velocity, mis

Dynamic Pressure, Nm”

Mach Number

Effects of Gravity and Drag
on the Velocity Vector

Thrust/Weight = T/W = 2

1 .
Thrust = 1960 Thrust — [CDSE P(RV?(1) + mg sin y(t)]

C,=02 V(t)=
S=0.1 m
Mass = 100 7(t) = —gcosy(t)/V (1)
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+ Significant reduction in velocity magnitude
+ Strong curvature of the flight path
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and drag - With higher /W
— Shorter time to orbit
— Increased loss due to drag

Mach number
~ - 0.0001 Dynamic pressure

Mach Number
Mach Number

— Decreased loss due to gravity




Typical Ariane 4 Launch Profile

(Spacecraft Systems Engineering, 2003)
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Jet Stream Profiles

Launch vehicle must able
to fly through strong
wind profiles

Design profiles assume
95th-g9gth-percentile worst
winds and wind shear
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+ Thrust-to-weight ratio = load factor

Thr.ust — n (load factor) = Thrust
Weight

Thrust Thrust

Limit Load Factor

Mass-Ratio Effect on
Final Load Factor

s Mg =
Miiiar8o M ea8,

Miitiar =
Load
Factor

* If thrust is constant
nﬁnal - Miisial

I
I
I
I
1
1
:
I
Final Load Thrust ! b

=u
n inital m final

Factor i
Initial Load Mass Mass l
Factor Ratio=2 Ratio=5 g
1.3 2.6 6.5 Time
2 4 10
3 6 15

Aerodynamic Normal Force

Normal Force = C,, 1pV2S ~&alpV2S
2 do 2

Oncoming
Airstream

—

+ For small angle of attack, normal force is

approximately the same as lift



Aerodynamic Pitching Moment

g 1 oCc 1
Pitching Moment = C, — pV’Sr ~—"a— pV’Sr
2 do 2
r = Reference Length
Oncoming
Airstream T
z
+ Pitching moment components * ... plus pitching moment
integrate over length to produce due to thrust vectoring for
net pitching moment control
— Increase in cross-sectional area
— Tail fins

Attitude Stability ..

LM, +M, M 1[oM. oM,
AO{ - Yaero Vihrust Vet {m AO[+ 0'))”«, AO{

¥y

+ Attitude perturbations are stable if
oM oM
Ynet < O, Ynet < 0
do do

° o A\ - Oscillatory divergence if

Il |
05 \V o8 I % >0 Dynamic Instability

+ Non-oscillatory divergence if

0 10 20 30 0 10 20 30

M, , .
Time,s Time, s T >0 Static Instability
o

Thrust-vector feedback control normally required to
provide static and dynamic stability

Angular Attitude Perturbations

Horizontal

+ Pitch-angle perturbation, A6, is about the same as angle-of-
attack perturbation, Aa.

Af = Adi = Net Pitching Moment .
Pitching Moment of Inertia
Then
M, +M M 1 (M
Ad = Yaero Ythrust = Vet _|: )"ner Aa + Ynet Aa:|
I, I, I, da o

Typical Thrust-Vector
Angle Requirements

Angle of Attack, o Nl —]

Velocity

+ Example: Concept study for solid-fueled Saturn-class
vehicles (NASA TN D-4662, 1968)

TABLE II. - THRUST-VECTOR DEFLECTION

ANGLE REQUIREMENTS

Parameter Variation Apouo-l Voyager | SSOPM
Deflection angle, deg

1. Steady stage winds 99 percent 1.35 2.30 AT
2. Wind gusts 3¢ .15 .26 .13
3. Thrust misalinement 30 .25 .25 .25
4. Thrust and weights 3¢ .16 .15 .15
5. Pitch program maximum .50 .50 .50
2Total 1.68 2.69 1.49 |

2Total consists of item 1 plus root sum square of items 2, 3,
and 4.




Pitching Moment Distribution Launch Phases and
Causes Large Bending Effects Loading Issues-1

Liftoff
_ o = Separstion - Reverberation from the
7 snowmmn ground
) &H i i S arsiioa | — Random vibrations
Oncoming # o "ho:k — Thrust transients
Airstream Siag *  Winds and Transonic
=i = == N Viration anical shock Aerodynamics
Seanedscmrton — High-altitude jet stream
” Max Winds .
5 Son oo shild relstive deflecton — Buffeting
Mechanicat vi .
+ Staging
: . Liftoft — High sustained
+ Aerodynamic and thrust-vectoring effects a E@ hoouste acceleration
bend the vehicle _ — Thrust transients

* More on this in a later lecture

Launch Phases and
Loading Issues-2

0 = Separation

Y °
) ) gﬁ e Enaliioan Pyrotechnic shock °
Heat shield separation & I NeXt l lme.
H
7

— Mechanical and catShild Separaion
nical s

pyrotechnic transients Pyroteahnic shock LaunCh vehiCle DGSigﬂ:

» Spin stabilization Staging

e e ration | ©, i Configurations and Structures

— Steady-state rotation 5 e Fioa shieid relative deflection

. se parati on Mechanicat vibration

— Pyrotechnic transients —
Acoustic
Ignition transients
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